arb/acb/test/t-dot.c

200 lines
6.4 KiB
C

/*
Copyright (C) 2018 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb.h"
ARB_DLL extern slong acb_dot_gauss_dot_cutoff;
int main()
{
slong iter;
flint_rand_t state;
flint_printf("dot....");
fflush(stdout);
flint_randinit(state);
for (iter = 0; iter < 1000000 * arb_test_multiplier(); iter++)
{
acb_ptr x, y;
acb_t s1, s2, z;
slong i, len, prec, xbits, ybits, ebits;
int ok, initial, subtract, revx, revy;
if (n_randint(state, 100) == 0)
len = n_randint(state, 50);
else if (n_randint(state, 10) == 0)
len = n_randint(state, 5);
else
len = n_randint(state, 3);
acb_dot_gauss_dot_cutoff = 3 + n_randint(state, 30);
if (n_randint(state, 10) != 0 || len > 10)
{
prec = 2 + n_randint(state, 500);
xbits = 2 + n_randint(state, 500);
ybits = 2 + n_randint(state, 500);
}
else
{
prec = 2 + n_randint(state, 5000);
xbits = 2 + n_randint(state, 5000);
ybits = 2 + n_randint(state, 5000);
}
if (n_randint(state, 100) == 0)
ebits = 2 + n_randint(state, 100);
else
ebits = 2 + n_randint(state, 10);
initial = n_randint(state, 2);
subtract = n_randint(state, 2);
revx = n_randint(state, 2);
revy = n_randint(state, 2);
x = _acb_vec_init(len);
y = _acb_vec_init(len);
acb_init(s1);
acb_init(s2);
acb_init(z);
switch (n_randint(state, 3))
{
case 0:
for (i = 0; i < len; i++)
{
acb_randtest(x + i, state, xbits, ebits);
acb_randtest(y + i, state, ybits, ebits);
}
break;
/* Test with cancellation */
case 1:
for (i = 0; i < len; i++)
{
if (i <= len / 2)
{
acb_randtest(x + i, state, xbits, ebits);
acb_randtest(y + i, state, ybits, ebits);
}
else
{
acb_neg(x + i, x + len - i - 1);
acb_set(y + i, y + len - i - 1);
}
}
break;
default:
for (i = 0; i < len; i++)
{
if (i <= len / 2)
{
acb_randtest(x + i, state, xbits, ebits);
acb_randtest(y + i, state, ybits, ebits);
}
else
{
acb_neg_round(x + i, x + len - i - 1, 2 + n_randint(state, 500));
acb_set_round(y + i, y + len - i - 1, 2 + n_randint(state, 500));
}
}
break;
}
acb_randtest(s1, state, 200, 100);
acb_randtest(s2, state, 200, 100);
acb_randtest(z, state, xbits, ebits);
acb_dot(s1, initial ? z : NULL, subtract,
revx ? (x + len - 1) : x, revx ? -1 : 1,
revy ? (y + len - 1) : y, revy ? -1 : 1,
len, prec);
acb_dot_precise(s2, initial ? z : NULL, subtract,
revx ? (x + len - 1) : x, revx ? -1 : 1,
revy ? (y + len - 1) : y, revy ? -1 : 1,
len, ebits <= 12 ? ARF_PREC_EXACT : 2 * prec + 100);
if (ebits <= 12)
ok = acb_contains(s1, s2);
else
ok = acb_overlaps(s1, s2);
if (!ok)
{
flint_printf("FAIL\n\n");
flint_printf("iter = %wd, len = %wd, prec = %wd, ebits = %wd, subtract = %d\n\n", iter, len, prec, ebits, subtract);
if (initial)
{
flint_printf("z = ", i); acb_printn(z, 100, ARB_STR_MORE); flint_printf(" (%wd)\n\n", acb_bits(z));
}
for (i = 0; i < len; i++)
{
flint_printf("x[%wd] = ", i); acb_printn(x + i, 100, ARB_STR_MORE); flint_printf(" (%wd)\n", acb_bits(x + i));
flint_printf("y[%wd] = ", i); acb_printn(y + i, 100, ARB_STR_MORE); flint_printf(" (%wd)\n", acb_bits(y + i));
}
flint_printf("\n\n");
flint_printf("s1 = "); acb_printn(s1, 100, ARB_STR_MORE); flint_printf("\n\n");
flint_printf("s2 = "); acb_printn(s2, 100, ARB_STR_MORE); flint_printf("\n\n");
flint_abort();
}
/* With the fast algorithm, we expect identical results when
reversing the vectors. */
if (ebits <= 12)
{
revx ^= 1;
revy ^= 1;
acb_dot(s2, initial ? z : NULL, subtract,
revx ? (x + len - 1) : x, revx ? -1 : 1,
revy ? (y + len - 1) : y, revy ? -1 : 1,
len, prec);
if (!acb_equal(s1, s2))
{
flint_printf("FAIL (reversal)\n\n");
flint_printf("iter = %wd, len = %wd, prec = %wd, ebits = %wd\n\n", iter, len, prec, ebits);
if (initial)
{
flint_printf("z = ", i); acb_printn(z, 100, ARB_STR_MORE); flint_printf(" (%wd)\n\n", acb_bits(z));
}
for (i = 0; i < len; i++)
{
flint_printf("x[%wd] = ", i); acb_printn(x + i, 100, ARB_STR_MORE); flint_printf(" (%wd)\n", acb_bits(x + i));
flint_printf("y[%wd] = ", i); acb_printn(y + i, 100, ARB_STR_MORE); flint_printf(" (%wd)\n", acb_bits(y + i));
}
flint_printf("\n\n");
flint_printf("s1 = "); acb_printn(s1, 100, ARB_STR_MORE); flint_printf("\n\n");
flint_printf("s2 = "); acb_printn(s2, 100, ARB_STR_MORE); flint_printf("\n\n");
flint_abort();
}
}
acb_clear(s1);
acb_clear(s2);
acb_clear(z);
_acb_vec_clear(x, len);
_acb_vec_clear(y, len);
}
flint_randclear(state);
flint_cleanup();
flint_printf("PASS\n");
return EXIT_SUCCESS;
}