arb/doc/source/polylogarithms.rst
2015-01-16 09:29:10 +01:00

97 lines
3.1 KiB
ReStructuredText

.. _algorithms_polylogarithms:
Algorithms for polylogarithms
===============================================================================
The polylogarithm is defined for `s, z \in \mathbb{C}` with `|z| < 1` by
.. math ::
\operatorname{Li}_s(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^s}
and for `|z| \ge 1` by analytic continuation, except for the singular
point `z = 1`.
Computation for small z
-------------------------------------------------------------------------------
The power sum converges rapidly when `|z| \ll 1`.
To compute the series expansion with respect to `s`, we substitute
`s \to s + x \in \mathbb{C}[[x]]` and obtain
.. math ::
\operatorname{Li}_{s+x}(z) = \sum_{d=0}^{\infty} x^d
\frac{(-1)^d}{d!} \sum_{k=1}^{\infty} T(k)
where
.. math ::
T(k) = \frac{z^k \log^d(k)}{k^s}.
The remainder term `\left| \sum_{k=N}^{\infty} T(k) \right|` is bounded
via :func:`mag_polylog_tail`.
Expansion for general z
-------------------------------------------------------------------------------
For general complex `s, z`, we write the polylogarithm as a sum of
two Hurwitz zeta functions
.. math ::
\operatorname{Li}_s(z) = \frac{\Gamma(v)}{(2\pi)^v}
\left[
i^v
\zeta \left(v, \frac{1}{2} + \frac{\log(-z)}{2\pi i}\right)
+ i^{-v}
\zeta \left(v, \frac{1}{2} - \frac{\log(-z)}{2\pi i}\right)
\right]
in which `s = 1-v`.
With the principal branch of `\log(-z)`, we obtain the conventional
analytic continuation of the polylogarithm with a branch
cut on `z \in (1,+\infty)`.
To compute the series expansion with respect to `v`, we substitute
`v \to v + x \in \mathbb{C}[[x]]` in this formula
(at the end of the computation, we map `x \to -x` to
obtain the power series for `\operatorname{Li}_{s+x}(z)`).
The right hand side becomes
.. math ::
\Gamma(v+x) [E_1 Z_1 + E_2 Z_2]
where `E_1 = (i/(2 \pi))^{v+x}`, `Z_1 = \zeta(v+x,\ldots)`,
`E_2 = (1/(2 \pi i))^{v+x}`, `Z_2 = \zeta(v+x,\ldots)`.
When `v = 1`, the `Z_1` and `Z_2` terms become Laurent series with
a leading `1/x` term. In this case,
we compute the deflated series `\tilde Z_1, \tilde Z_2 = \zeta(x,\ldots) - 1/x`.
Then
.. math ::
E_1 Z_1 + E_2 Z_2 = (E_1 + E_2)/x + E_1 \tilde Z_1 + E_2 \tilde Z_2.
Note that `(E_1 + E_2) / x` is a power series, since the constant term in
`E_1 + E_2` is zero when `v = 1`. So we simply compute one extra derivative
of both `E_1` and `E_2`, and shift them one step.
When `v = 0, -1, -2, \ldots`, the `\Gamma(v+x)` prefactor has a pole.
In this case, we proceed analogously and formally multiply
`x \, \Gamma(v+x)` with `[E_1 Z_1 + E_2 Z_2] / x`.
Note that the formal cancellation only works when the order `s` (or `v`)
is an exact integer: it is not currently possible to use this method when
`s` is a small ball containing any of `0, 1, 2, \ldots` (then the
result becomes indeterminate).
The Hurwitz zeta method becomes inefficient when `|z| \to 0` (it
gives an indeterminate
result when `z = 0`). This is not a problem since we just use the defining series
for the polylogarithm in that region.
It also becomes inefficient when `|z| \to \infty`, for which an asymptotic
expansion would better.