arb/acb_modular/theta_transform.c
2014-10-20 13:33:30 +02:00

122 lines
3 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2014 Fredrik Johansson
******************************************************************************/
#include "acb_modular.h"
/* convert theta_{m,n} to theta_i */
static int
swappy1(int m, int n)
{
m = m & 1;
n = n & 1;
if (m == 0 && n == 0) return 2;
if (m == 0 && n == 1) return 3;
if (m == 1 && n == 0) return 1;
return 0;
}
/* extra phase shift picked up: a factor (-1)^n when m is congruent
to 2,3 (mod 4), and possibly a factor i = sqrt(-1) when converting
from theta_1 to theta_{1,1} */
static int
swappy2(int m, int n)
{
m = m & 3;
n = n & 1;
if (m == 1 && n == 1) return 2; /* i */
if (m == 2 && n == 1) return 4; /* (-1)^n */
if (m == 3 && n == 1) return 6; /* (-1)^n * i */
return 0;
}
void
acb_modular_theta_transform(int * R, int * S, int * C, const psl2z_t g)
{
R[0] = 0;
R[1] = 0;
R[2] = 0;
R[3] = 0;
S[0] = 0;
S[1] = 1;
S[2] = 2;
S[3] = 3;
if (fmpz_is_zero(&g->c))
{
C[0] = 0;
if (fmpz_is_odd(&g->b))
{
S[2] = 3;
S[3] = 2;
}
/* -b mod 8 */
R[0] = (- (int) fmpz_fdiv_ui(&g->b, 8)) & 7;
R[1] = R[0];
}
else
{
int a, b, c, d, e1, e2;
psl2z_t h;
psl2z_init(h);
psl2z_inv(h, g);
e1 = acb_modular_epsilon_arg(h);
e2 = acb_modular_epsilon_arg(g);
psl2z_clear(h);
C[0] = 1;
a = fmpz_fdiv_ui(&g->a, 8);
b = fmpz_fdiv_ui(&g->b, 8);
c = fmpz_fdiv_ui(&g->c, 8);
d = fmpz_fdiv_ui(&g->d, 8);
R[0] = e1 + 1;
R[1] = -e2 + 5 + (2 - c) * a;
R[2] = -e2 + 4 + (c - d - 2) * (b - a);
R[3] = -e2 + 3 - (2 + d) * b;
S[1] = swappy1(1 - c, 1 + a);
R[1] += swappy2(1 - c, 1 + a);
S[2] = swappy1(1 + d - c, 1 - b + a);
R[2] += swappy2(1 + d - c, 1 - b + a);
S[3] = swappy1(1 + d, 1 - b);
R[3] += swappy2(1 + d, 1 - b);
/* floor mod by 8 */
R[0] &= 7;
R[1] &= 7;
R[2] &= 7;
R[3] &= 7;
}
}