arb/acb_modular/theta_sum.c

542 lines
15 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2014 Fredrik Johansson
******************************************************************************/
#include "acb_modular.h"
double
mag_get_log2_d_approx(const mag_t x)
{
if (mag_is_zero(x))
{
return COEFF_MIN;
}
else if (mag_is_inf(x))
{
return COEFF_MAX;
}
else if (COEFF_IS_MPZ(MAG_EXP(x)))
{
if (fmpz_sgn(MAG_EXPREF(x)) < 0)
return COEFF_MIN;
else
return COEFF_MAX;
}
else
{
slong e = MAG_EXP(x);
if (e < -20 || e > 20)
return e;
else
return e + 1.4426950408889634074 *
mag_d_log_upper_bound(MAG_MAN(x) * ldexp(1.0, -MAG_BITS));
}
}
void
acb_modular_theta_sum(acb_ptr theta1,
acb_ptr theta2,
acb_ptr theta3,
acb_ptr theta4,
const acb_t w, int w_is_unit, const acb_t q, slong len, slong prec)
{
mag_t qmag, wmag, vmag;
mag_ptr err;
double log2q_approx, log2w_approx, log2term_approx;
slong e, e1, e2, k, k1, k2, r, n, N, WN, term_prec;
slong *exponents, *aindex, *bindex;
acb_ptr qpow, wpow, vpow;
acb_t tmp1, tmp2, v;
int q_is_real, w_is_one;
q_is_real = arb_is_zero(acb_imagref(q));
w_is_one = acb_is_one(w);
if (w_is_one && len == 1)
{
acb_modular_theta_const_sum(theta2, theta3, theta4, q, prec);
acb_zero(theta1);
return;
}
mag_init(qmag);
mag_init(wmag);
mag_init(vmag);
acb_init(tmp1);
acb_init(tmp2);
acb_init(v);
err = _mag_vec_init(len);
if (w_is_one)
acb_one(v);
else if (w_is_unit)
acb_conj(v, w);
else
acb_inv(v, w, prec);
acb_get_mag(qmag, q);
log2q_approx = mag_get_log2_d_approx(qmag);
if (w_is_unit)
{
mag_one(wmag);
mag_one(vmag);
log2w_approx = 0.0;
}
else
{
acb_get_mag(wmag, w);
acb_get_mag(vmag, v);
mag_max(wmag, wmag, vmag);
log2w_approx = mag_get_log2_d_approx(wmag);
}
if (log2q_approx >= 0.0)
{
N = 1;
for (r = 0; r < len; r++)
mag_inf(err + r);
}
else /* Pick N and compute error bound */
{
mag_t den, cmag, dmag;
mag_init(den);
mag_init(cmag);
mag_init(dmag);
N = 1;
while (0.05 * N * N < prec)
{
log2term_approx = log2q_approx * ((N+2)*(N+2)/4) + (N+2)*log2w_approx;
if (log2term_approx < -prec - 2)
break;
N++;
}
if (len == 1)
{
if (w_is_unit)
{
mag_one(den);
mag_sub_lower(den, den, qmag); /* 1 - |q| is good enough */
}
else /* denominator: 1 - |q|^(floor((N+1)/2)+1) * max(|w|,1/|w|) */
{
mag_pow_ui(err, qmag, (N + 1) / 2 + 1);
mag_mul(err, err, wmag);
mag_one(den);
mag_sub_lower(den, den, err);
}
/* no convergence */
if (mag_is_zero(den))
{
N = 1;
mag_inf(err);
}
else if (w_is_unit)
{
mag_pow_ui(err, qmag, ((N + 2) * (N + 2)) / 4);
mag_div(err, err, den);
mag_mul_2exp_si(err, err, 1);
}
else
{
mag_pow_ui(err, qmag, ((N + 2) * (N + 2)) / 4);
mag_pow_ui(vmag, wmag, N + 2);
mag_mul(err, err, vmag);
mag_div(err, err, den);
mag_mul_2exp_si(err, err, 1);
}
}
else
{
/* numerator: 2 |q|^E * max(|w|,|v|)^(N+2) * (N+2)^r */
mag_pow_ui(err, qmag, ((N + 2) * (N + 2)) / 4);
if (!w_is_one)
{
mag_pow_ui(vmag, wmag, N + 2);
mag_mul(err, err, vmag);
}
mag_mul_2exp_si(err, err, 1);
for (r = 1; r < len; r++)
mag_mul_ui(err + r, err + r - 1, N + 2);
/* den: 1 - |q|^floor((N+1)/2+1) * max(|w|,|v|) * exp(r/(N+2)) */
mag_pow_ui(cmag, qmag, (N + 1) / 2 + 1);
mag_mul(cmag, cmag, wmag);
for (r = 0; r < len; r++)
{
mag_set_ui(dmag, r);
mag_div_ui(dmag, dmag, N + 2);
mag_exp(dmag, dmag);
mag_mul(dmag, cmag, dmag);
mag_one(den);
mag_sub_lower(den, den, dmag);
if (mag_is_zero(den))
mag_inf(err + r);
else
mag_div(err + r, err + r, den);
}
}
/* don't do work if we can't determine the zeroth derivative */
if (mag_is_inf(err))
N = 1;
mag_clear(den);
mag_clear(cmag);
mag_clear(dmag);
}
exponents = flint_malloc(sizeof(slong) * 3 * N);
aindex = exponents + N;
bindex = aindex + N;
qpow = _acb_vec_init(N);
acb_modular_addseq_theta(exponents, aindex, bindex, N);
acb_set_round(qpow + 0, q, prec);
_acb_vec_zero(theta1, len);
_acb_vec_zero(theta2, len);
_acb_vec_zero(theta3, len);
_acb_vec_zero(theta4, len);
WN = (N + 3) / 2;
/* compute powers of w^2 and 1/w^2 */
/* todo: conjugates... */
if (!w_is_one)
{
wpow = _acb_vec_init(WN);
vpow = _acb_vec_init(WN + 1);
acb_mul(tmp1, w, w, prec);
acb_mul(tmp2, v, v, prec);
_acb_vec_set_powers(wpow, tmp1, WN, prec);
_acb_vec_set_powers(vpow, tmp2, WN + 1, prec);
}
else
{
wpow = vpow = NULL;
}
for (k = 0; k < N; k++)
{
e = exponents[k];
log2term_approx = e * log2q_approx + (k+2) * log2w_approx;
term_prec = FLINT_MIN(FLINT_MAX(prec + log2term_approx + 16.0, 16.0), prec);
if (k > 0)
{
k1 = aindex[k];
k2 = bindex[k];
e1 = exponents[k1];
e2 = exponents[k2];
if (e == e1 + e2)
{
acb_mul_approx(qpow + k, tmp1, tmp2,
qpow + k1, qpow + k2, term_prec, prec);
}
else if (e == 2 * e1 + e2)
{
acb_mul_approx(qpow + k, tmp1, tmp2,
qpow + k1, qpow + k1, term_prec, prec);
acb_mul_approx(qpow + k, tmp1, tmp2,
qpow + k, qpow + k2, term_prec, prec);
}
else
{
flint_printf("exponent not in addition sequence!\n");
abort();
}
}
if (w_is_one && len == 1)
{
if (k % 2 == 0)
{
acb_add(theta3, theta3, qpow + k, prec);
if (k % 4 == 0)
acb_sub(theta4, theta4, qpow + k, prec);
else
acb_add(theta4, theta4, qpow + k, prec);
}
else
{
acb_add(theta2, theta2, qpow + k, prec);
}
}
else
{
n = k / 2 + 1;
if (k % 2 == 0)
{
acb_ptr term;
if (w_is_one)
{
acb_mul_2exp_si(tmp1, qpow + k, 1);
acb_zero(tmp2);
}
else
{
/* tmp1 = w^(2n) + v^(2n) ~= 2 cos(2n) */
acb_add(tmp1, wpow + n, vpow + n, term_prec);
acb_mul(tmp1, qpow + k, tmp1, term_prec);
/* tmp2 = w^(2n) - v^(2n) ~= 2 sin(2n) */
if (len > 1)
{
acb_sub(tmp2, wpow + n, vpow + n, term_prec);
acb_mul(tmp2, qpow + k, tmp2, term_prec);
}
}
/* compute all the derivatives */
for (r = 0; r < len; r++)
{
term = (r % 2 == 0) ? tmp1 : tmp2;
if (r == 1)
acb_mul_ui(term, term, 2 * n, term_prec);
else if (r > 1)
acb_mul_ui(term, term, 4 * n * n, term_prec);
acb_add(theta3 + r, theta3 + r, term, prec);
if (k % 4 == 0)
acb_sub(theta4 + r, theta4 + r, term, prec);
else
acb_add(theta4 + r, theta4 + r, term, prec);
}
}
else
{
acb_ptr term;
if (w_is_one)
{
acb_mul_2exp_si(tmp1, qpow + k, 1);
acb_zero(tmp2);
}
else
{
/* tmp1 = w^(2n) + v^(2n+2) ~= 2 cos(2n+1) / w */
acb_add(tmp1, wpow + n, vpow + n + 1, term_prec);
acb_mul(tmp1, qpow + k, tmp1, term_prec);
/* tmp2 = w^(2n) - v^(2n+2) ~= 2 sin(2n+1) / w */
acb_sub(tmp2, wpow + n, vpow + n + 1, term_prec);
acb_mul(tmp2, qpow + k, tmp2, term_prec);
}
/* compute all the derivatives */
for (r = 0; r < len; r++)
{
if (r > 0)
{
acb_mul_ui(tmp1, tmp1, 2 * n + 1, term_prec);
acb_mul_ui(tmp2, tmp2, 2 * n + 1, term_prec);
}
term = (r % 2 == 0) ? tmp2 : tmp1;
if (k % 4 == 1)
acb_sub(theta1 + r, theta1 + r, term, prec);
else
acb_add(theta1 + r, theta1 + r, term, prec);
term = (r % 2 == 0) ? tmp1 : tmp2;
acb_add(theta2 + r, theta2 + r, term, prec);
}
}
}
}
if (w_is_one && len == 1)
{
acb_mul_2exp_si(theta2, theta2, 1);
acb_mul_2exp_si(theta3, theta3, 1);
acb_mul_2exp_si(theta4, theta4, 1);
}
/* theta1: w * sum + 2 sin */
/* theta2: w * sum + 2 cos */
if (!w_is_one)
{
_acb_vec_scalar_mul(theta1, theta1, len, w, prec);
_acb_vec_scalar_mul(theta2, theta2, len, w, prec);
acb_add(tmp1, w, v, prec);
acb_sub(tmp2, w, v, prec);
}
else
{
acb_set_ui(tmp1, 2);
acb_zero(tmp2);
}
for (r = 0; r < len; r++)
{
acb_add(theta1 + r, theta1 + r, (r % 2 == 0) ? tmp2 : tmp1, prec);
acb_add(theta2 + r, theta2 + r, (r % 2 == 0) ? tmp1 : tmp2, prec);
}
/*
Coefficient r in the z-expansion gains a factor: pi^r / r!
times a sign:
+ 2 cos = +1 * (exp + 1/exp)
- 2 sin = +i * (exp - 1/exp)
- 2 cos = -1 * (exp + 1/exp)
+ 2 sin = -i * (exp - 1/exp)
...
*/
acb_mul_onei(theta1, theta1);
acb_neg(theta1, theta1);
for (r = 1; r < len; r++)
{
if (r % 4 == 0)
{
acb_mul_onei(theta1 + r, theta1 + r);
acb_neg(theta1 + r, theta1 + r);
}
else if (r % 4 == 1)
{
acb_mul_onei(theta2 + r, theta2 + r);
acb_mul_onei(theta3 + r, theta3 + r);
acb_mul_onei(theta4 + r, theta4 + r);
}
else if (r % 4 == 2)
{
acb_mul_onei(theta1 + r, theta1 + r);
acb_neg(theta2 + r, theta2 + r);
acb_neg(theta3 + r, theta3 + r);
acb_neg(theta4 + r, theta4 + r);
}
else
{
acb_neg(theta1 + r, theta1 + r);
acb_mul_onei(theta2 + r, theta2 + r);
acb_mul_onei(theta3 + r, theta3 + r);
acb_mul_onei(theta4 + r, theta4 + r);
acb_neg(theta2 + r, theta2 + r);
acb_neg(theta3 + r, theta3 + r);
acb_neg(theta4 + r, theta4 + r);
}
}
/* Add error bound. Note that this must be done after the
rearrangements above, and before scaling by pi^r / r! below. */
for (r = 0; r < len; r++)
{
if (q_is_real && w_is_unit) /* result must be real */
{
arb_add_error_mag(acb_realref(theta1 + r), err + r);
arb_add_error_mag(acb_realref(theta2 + r), err + r);
arb_add_error_mag(acb_realref(theta3 + r), err + r);
arb_add_error_mag(acb_realref(theta4 + r), err + r);
}
else
{
acb_add_error_mag(theta1 + r, err + r);
acb_add_error_mag(theta2 + r, err + r);
acb_add_error_mag(theta3 + r, err + r);
acb_add_error_mag(theta4 + r, err + r);
}
}
if (len > 1)
{
arb_t c, d;
arb_init(c);
arb_init(d);
arb_const_pi(c, prec);
arb_set(d, c);
for (r = 1; r < len; r++)
{
acb_mul_arb(theta1 + r, theta1 + r, d, prec);
acb_mul_arb(theta2 + r, theta2 + r, d, prec);
acb_mul_arb(theta3 + r, theta3 + r, d, prec);
acb_mul_arb(theta4 + r, theta4 + r, d, prec);
if (r + 1 < len)
{
arb_mul(d, d, c, prec);
arb_div_ui(d, d, r + 1, prec);
}
}
arb_clear(c);
arb_clear(d);
}
acb_add_ui(theta3, theta3, 1, prec);
acb_add_ui(theta4, theta4, 1, prec);
if (!w_is_one)
{
_acb_vec_clear(wpow, WN);
_acb_vec_clear(vpow, WN + 1);
}
flint_free(exponents);
_acb_vec_clear(qpow, N);
acb_clear(tmp1);
acb_clear(tmp2);
acb_clear(v);
mag_clear(qmag);
mag_clear(wmag);
mag_clear(vmag);
_mag_vec_clear(err, len);
}