arb/acb_poly/zeta_em_bound.c
2016-04-26 17:20:05 +02:00

203 lines
4.5 KiB
C

/*
Copyright (C) 2014 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_poly.h"
static void
bound_I(arb_ptr I, const arb_t A, const arb_t B, const arb_t C, slong len, slong wp)
{
slong k;
arb_t D, Dk, L, T, Bm1;
arb_init(D);
arb_init(Dk);
arb_init(Bm1);
arb_init(T);
arb_init(L);
arb_sub_ui(Bm1, B, 1, wp);
arb_one(L);
/* T = 1 / (A^Bm1 * Bm1) */
arb_inv(T, A, wp);
arb_pow(T, T, Bm1, wp);
arb_div(T, T, Bm1, wp);
if (len > 1)
{
arb_log(D, A, wp);
arb_add(D, D, C, wp);
arb_mul(D, D, Bm1, wp);
arb_set(Dk, D);
}
for (k = 0; k < len; k++)
{
if (k > 0)
{
arb_mul_ui(L, L, k, wp);
arb_add(L, L, Dk, wp);
arb_mul(Dk, Dk, D, wp);
}
arb_mul(I + k, L, T, wp);
arb_div(T, T, Bm1, wp);
}
arb_clear(D);
arb_clear(Dk);
arb_clear(Bm1);
arb_clear(T);
arb_clear(L);
}
/* 0.5*(B/AN)^2 + |B|/AN */
static void
bound_C(arb_t C, const arb_t AN, const arb_t B, slong wp)
{
arb_t t;
arb_init(t);
arb_abs(t, B);
arb_div(t, t, AN, wp);
arb_mul_2exp_si(C, t, -1);
arb_add_ui(C, C, 1, wp);
arb_mul(C, C, t, wp);
arb_clear(t);
}
static void
bound_K(arb_t C, const arb_t AN, const arb_t B, const arb_t T, slong wp)
{
if (arb_is_zero(B) || arb_is_zero(T))
{
arb_one(C);
}
else
{
arb_div(C, B, AN, wp);
/* TODO: atan is dumb, should also bound by pi/2 */
arb_atan(C, C, wp);
arb_mul(C, C, T, wp);
if (arb_is_nonpositive(C))
arb_one(C);
else
arb_exp(C, C, wp);
}
}
static void
bound_rfac(arb_ptr F, const acb_t s, ulong n, slong len, slong wp)
{
if (len == 1)
{
acb_rising_ui_get_mag(arb_radref(F), s, n);
arf_set_mag(arb_midref(F), arb_radref(F));
mag_zero(arb_radref(F + 0));
}
else
{
arb_struct sx[2];
arb_init(sx + 0);
arb_init(sx + 1);
acb_abs(sx + 0, s, wp);
arb_one(sx + 1);
_arb_vec_zero(F, len);
_arb_poly_rising_ui_series(F, sx, 2, n, len, wp);
arb_clear(sx + 0);
arb_clear(sx + 1);
}
}
void
_acb_poly_zeta_em_bound(arb_ptr bound, const acb_t s, const acb_t a, ulong N, ulong M, slong len, slong wp)
{
arb_t K, C, AN, S2M;
arb_ptr F, R;
slong k;
arb_srcptr alpha = acb_realref(a);
arb_srcptr beta = acb_imagref(a);
arb_srcptr sigma = acb_realref(s);
arb_srcptr tau = acb_imagref(s);
arb_init(AN);
arb_init(S2M);
/* require alpha + N > 1, sigma + 2M > 1 */
arb_add_ui(AN, alpha, N - 1, wp);
arb_add_ui(S2M, sigma, 2*M - 1, wp);
if (!arb_is_positive(AN) || !arb_is_positive(S2M) || N < 1 || M < 1)
{
arb_clear(AN);
arb_clear(S2M);
for (k = 0; k < len; k++)
arb_pos_inf(bound + k);
return;
}
/* alpha + N, sigma + 2M */
arb_add_ui(AN, AN, 1, wp);
arb_add_ui(S2M, S2M, 1, wp);
R = _arb_vec_init(len);
F = _arb_vec_init(len);
arb_init(K);
arb_init(C);
/* bound for power integral */
bound_C(C, AN, beta, wp);
bound_K(K, AN, beta, tau, wp);
bound_I(R, AN, S2M, C, len, wp);
for (k = 0; k < len; k++)
{
arb_mul(R + k, R + k, K, wp);
arb_div_ui(K, K, k + 1, wp);
}
/* bound for rising factorial */
bound_rfac(F, s, 2*M, len, wp);
/* product (TODO: only need upper bound; write a function for this) */
_arb_poly_mullow(bound, F, len, R, len, len, wp);
/* bound for bernoulli polynomials, 4 / (2pi)^(2M) */
arb_const_pi(C, wp);
arb_mul_2exp_si(C, C, 1);
arb_pow_ui(C, C, 2 * M, wp);
arb_ui_div(C, 4, C, wp);
_arb_vec_scalar_mul(bound, bound, len, C, wp);
arb_clear(K);
arb_clear(C);
arb_clear(AN);
arb_clear(S2M);
_arb_vec_clear(R, len);
_arb_vec_clear(F, len);
}
void
_acb_poly_zeta_em_bound1(mag_t bound,
const acb_t s, const acb_t a, slong N, slong M, slong len, slong wp)
{
arb_ptr vec = _arb_vec_init(len);
_acb_poly_zeta_em_bound(vec, s, a, N, M, len, wp);
_arb_vec_get_mag(bound, vec, len);
_arb_vec_clear(vec, len);
}