arb/acb_dirichlet/zeta_jet.c

143 lines
3.8 KiB
C

/*
Copyright (C) 2017 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_dirichlet.h"
void
_acb_dirichlet_zeta_jet(acb_t t, const acb_t h, int deflate, slong len, slong prec)
{
acb_t a;
acb_init(a);
acb_one(a);
/* use reflection formula */
if (arf_sgn(arb_midref(acb_realref(h))) < 0)
{
/* zeta(s) = (2*pi)**s * sin(pi*s/2) / pi * gamma(1-s) * zeta(1-s) */
acb_t pi, hcopy;
acb_ptr f, s1, s2, s3, s4, u;
slong i;
acb_init(pi);
acb_init(hcopy);
f = _acb_vec_init(2);
s1 = _acb_vec_init(len);
s2 = _acb_vec_init(len);
s3 = _acb_vec_init(len);
s4 = _acb_vec_init(len);
u = _acb_vec_init(len);
acb_set(hcopy, h);
acb_const_pi(pi, prec);
/* s1 = (2*pi)**s */
acb_mul_2exp_si(pi, pi, 1);
_acb_poly_pow_cpx(s1, pi, h, len, prec);
acb_mul_2exp_si(pi, pi, -1);
/* s2 = sin(pi*s/2) / pi */
acb_set(f, h);
acb_one(f + 1);
acb_mul_2exp_si(f, f, -1);
acb_mul_2exp_si(f + 1, f + 1, -1);
_acb_poly_sin_pi_series(s2, f, 2, len, prec);
_acb_vec_scalar_div(s2, s2, len, pi, prec);
/* s3 = gamma(1-s) */
acb_sub_ui(f, hcopy, 1, prec);
acb_neg(f, f);
acb_set_si(f + 1, -1);
_acb_poly_gamma_series(s3, f, 2, len, prec);
/* s4 = zeta(1-s) */
acb_sub_ui(f, hcopy, 1, prec);
acb_neg(f, f);
_acb_poly_zeta_cpx_series(s4, f, a, 0, len, prec);
for (i = 1; i < len; i += 2)
acb_neg(s4 + i, s4 + i);
_acb_poly_mullow(u, s1, len, s2, len, len, prec);
_acb_poly_mullow(s1, s3, len, s4, len, len, prec);
_acb_poly_mullow(t, u, len, s1, len, len, prec);
/* add 1/(1-(s+t)) = 1/(1-s) + t/(1-s)^2 + ... */
if (deflate)
{
acb_sub_ui(u, hcopy, 1, prec);
acb_neg(u, u);
acb_inv(u, u, prec);
for (i = 1; i < len; i++)
acb_mul(u + i, u + i - 1, u, prec);
_acb_vec_add(t, t, u, len, prec);
}
acb_clear(pi);
acb_clear(hcopy);
_acb_vec_clear(f, 2);
_acb_vec_clear(s1, len);
_acb_vec_clear(s2, len);
_acb_vec_clear(s3, len);
_acb_vec_clear(s4, len);
_acb_vec_clear(u, len);
}
else
{
_acb_poly_zeta_cpx_series(t, h, a, deflate, len, prec);
}
acb_clear(a);
}
/* todo: should adjust precision to input accuracy */
void
acb_dirichlet_zeta_jet(acb_t res, const acb_t s, int deflate, slong len, slong prec)
{
double cutoff;
if (len == 1 && deflate == 0)
{
acb_zeta(res, s, prec);
return;
}
if (deflate == 0 && (arb_contains_zero(acb_imagref(s))
&& arb_contains_si(acb_realref(s), 1)))
{
_acb_vec_indeterminate(res, len);
return;
}
if (len > 2 || deflate != 0)
{
_acb_dirichlet_zeta_jet(res, s, deflate, len, prec);
}
else
{
cutoff = 24.0 * prec * sqrt(prec);
if (arb_is_exact(acb_realref(s)) &&
arf_cmp_2exp_si(arb_midref(acb_realref(s)), -1) == 0)
cutoff *= 2.5;
else
cutoff *= 4.0;
if (arf_cmpabs_d(arb_midref(acb_imagref(s)), cutoff) >= 0 &&
arf_cmpabs_d(arb_midref(acb_realref(s)), 10 + prec * 0.1) <= 0)
{
acb_dirichlet_zeta_jet_rs(res, s, len, prec);
}
else
{
_acb_dirichlet_zeta_jet(res, s, deflate, len, prec);
}
}
}