arb/acb_dirichlet/hardy_z_zero.c
2019-02-19 23:26:58 +01:00

243 lines
5.8 KiB
C

/*
Copyright (C) 2019 D.H.J. Polymath
Copyright (C) 2019 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_dirichlet.h"
#include "arb_calc.h"
static void
_acb_set_arf(acb_t res, const arf_t t)
{
acb_zero(res);
arb_set_arf(acb_realref(res), t);
}
int
_acb_dirichlet_definite_hardy_z(arb_t res, const arf_t t, slong *pprec)
{
int msign;
acb_t z;
acb_init(z);
while (1)
{
_acb_set_arf(z, t);
acb_dirichlet_hardy_z(z, z, NULL, NULL, 1, *pprec);
msign = arb_sgn_nonzero(acb_realref(z));
if (msign)
{
break;
}
*pprec *= 2;
}
acb_get_real(res, z);
acb_clear(z);
return msign;
}
void
_refine_hardy_z_zero_illinois(arb_t res, const arf_t ra, const arf_t rb, slong prec)
{
arf_t a, b, fa, fb, c, fc, t;
arb_t z;
slong k, nmag, abs_tol, wp;
int asign, bsign, csign;
arf_init(a);
arf_init(b);
arf_init(c);
arf_init(fa);
arf_init(fb);
arf_init(fc);
arf_init(t);
arb_init(z);
arf_set(a, ra);
arf_set(b, rb);
nmag = arf_abs_bound_lt_2exp_si(b);
abs_tol = nmag - prec - 4;
wp = prec + nmag + 8;
asign = _acb_dirichlet_definite_hardy_z(z, a, &wp);
arf_set(fa, arb_midref(z));
bsign = _acb_dirichlet_definite_hardy_z(z, b, &wp);
arf_set(fb, arb_midref(z));
if (asign == bsign)
{
flint_printf("isolate a zero before bisecting the interval\n");
flint_abort();
}
for (k = 0; k < 40; k++)
{
/* c = a - fa * (b - a) / (fb - fa) */
arf_sub(c, b, a, wp, ARF_RND_NEAR);
arf_sub(t, fb, fa, wp, ARF_RND_NEAR);
arf_div(c, c, t, wp, ARF_RND_NEAR);
arf_mul(c, c, fa, wp, ARF_RND_NEAR);
arf_sub(c, a, c, wp, ARF_RND_NEAR);
/* if c is not sandwiched between a and b, improve precision
and fall back to one bisection step */
if (!arf_is_finite(c) ||
!((arf_cmp(a, c) < 0 && arf_cmp(c, b) < 0) ||
(arf_cmp(b, c) < 0 && arf_cmp(c, a) < 0)))
{
/* flint_printf("no sandwich (k = %wd)\n", k); */
wp += 32;
arf_add(c, a, b, ARF_PREC_EXACT, ARF_RND_DOWN);
arf_mul_2exp_si(c, c, -1);
}
csign = _acb_dirichlet_definite_hardy_z(z, c, &wp);
arf_set(fc, arb_midref(z));
if (csign != bsign)
{
arf_set(a, b);
arf_set(fa, fb);
asign = bsign;
arf_set(b, c);
arf_set(fb, fc);
bsign = csign;
}
else
{
arf_set(b, c);
arf_set(fb, fc);
bsign = csign;
arf_mul_2exp_si(fa, fa, -1);
}
arf_sub(t, a, b, wp, ARF_RND_DOWN);
arf_abs(t, t);
if (arf_cmpabs_2exp_si(t, abs_tol) < 0)
break;
}
/* a and b may have changed places */
if (arf_cmp(a, b) > 0)
arf_swap(a, b);
arb_set_interval_arf(res, a, b, prec);
arf_clear(a);
arf_clear(b);
arf_clear(c);
arf_clear(fa);
arf_clear(fb);
arf_clear(fc);
arf_clear(t);
arb_clear(z);
}
void
_refine_hardy_z_zero_newton(arb_t res, const arf_t ra, const arf_t rb, slong prec)
{
acb_t z, zstart;
acb_ptr v;
mag_t der1, der2, err;
slong nbits, initial_prec, extraprec, wp, step;
slong * steps;
acb_init(z);
acb_init(zstart);
v = _acb_vec_init(2);
mag_init(der1);
mag_init(der2);
mag_init(err);
nbits = arf_abs_bound_lt_2exp_si(rb);
extraprec = nbits + 10;
initial_prec = 3 * nbits + 30;
_refine_hardy_z_zero_illinois(acb_imagref(zstart), ra, rb, initial_prec);
arb_set_d(acb_realref(zstart), 0.5);
/* Real part is exactly 1/2, but need an epsilon-enclosure (for bounds)
since we work with the complex function. */
mag_set_ui_2exp_si(arb_radref(acb_realref(zstart)), 1, nbits - initial_prec - 4);
/* Bound |zeta''(zstart)| for Newton error bound. */
acb_dirichlet_zeta_deriv_bound(der1, der2, zstart);
steps = flint_malloc(sizeof(slong) * FLINT_BITS);
step = 0;
steps[step] = prec;
while (steps[step] / 2 + extraprec > initial_prec)
{
steps[step + 1] = steps[step] / 2 + extraprec;
step++;
}
acb_set(z, zstart);
for ( ; step >= 0; step--)
{
wp = steps[step] + extraprec;
mag_set(err, arb_radref(acb_imagref(z)));
acb_get_mid(z, z);
acb_dirichlet_zeta_jet(v, z, 0, 2, wp);
mag_mul(err, err, der2);
acb_add_error_mag(v + 1, err);
acb_div(v, v, v + 1, wp);
acb_sub(v, z, v, wp);
if (acb_contains(zstart, v))
{
acb_set(z, v);
arb_set_d(acb_realref(z), 0.5);
}
else
{
/* can this happen? should we fallback to illinois? */
flint_printf("no inclusion for interval newton!\n");
flint_abort();
}
}
arb_set(res, acb_imagref(z));
flint_free(steps);
acb_clear(z);
acb_clear(zstart);
_acb_vec_clear(v, 2);
mag_clear(der1);
mag_clear(der2);
mag_clear(err);
}
void
_acb_dirichlet_refine_hardy_z_zero(arb_t res,
const arf_t a, const arf_t b, slong prec)
{
slong bits;
arb_set_interval_arf(res, a, b, prec + 8);
bits = arb_rel_accuracy_bits(res);
if (bits < prec)
{
if (prec < 4 * arf_abs_bound_lt_2exp_si(b) + 40)
_refine_hardy_z_zero_illinois(res, a, b, prec);
else
_refine_hardy_z_zero_newton(res, a, b, prec);
}
arb_set_round(res, res, prec);
}