mirror of
https://github.com/vale981/arb
synced 2025-03-08 18:51:40 -05:00
342 lines
13 KiB
ReStructuredText
342 lines
13 KiB
ReStructuredText
.. _dirichlet:
|
|
|
|
**dirichlet.h** -- Dirichlet characters
|
|
===================================================================================
|
|
|
|
*Warning: the interfaces in this module are experimental and may change
|
|
without notice.*
|
|
|
|
This module allows working with Dirichlet characters algebraically.
|
|
For evaluations of characters as complex numbers and Dirichlet L-functions,
|
|
see the :ref:`acb_dirichlet` module.
|
|
|
|
Multiplicative group modulo *q*
|
|
-------------------------------------------------------------------------------
|
|
|
|
Working with Dirichlet characters mod *q* consists mainly
|
|
in going from residue classes mod *q* to exponents on a set
|
|
of generators of the group.
|
|
|
|
This implementation relies on the Conrey numbering scheme
|
|
introduced in the LMFDB, which is an explicit choice of isomorphism
|
|
|
|
.. math::
|
|
|
|
(\mathbb Z/q\mathbb Z)^\times & \to &\bigoplus_i \mathbb Z/\phi_i\mathbb Z \\
|
|
x & \mapsto & (e_i)
|
|
|
|
We call *number* a residue class `x` modulo *q*, and *log* the
|
|
corresponding vector `(e_i)` of exponents of Conrey generators.
|
|
|
|
Going from a *log* to the corresponding *number* is a cheap
|
|
operation called exp, while the converse requires computing discrete
|
|
logarithms.
|
|
|
|
.. type:: dirichlet_group_struct
|
|
|
|
.. type:: dirichlet_group_t
|
|
|
|
Represents the group of Dirichlet characters mod *q*.
|
|
|
|
An *dirichlet_group_t* is defined as an array of *dirichlet_group_struct*
|
|
of length 1, permitting it to be passed by reference.
|
|
|
|
.. function:: void dirichlet_group_init(dirichlet_group_t G, ulong q)
|
|
|
|
Initializes *G* to the group of Dirichlet characters mod *q*.
|
|
|
|
This method computes a canonical decomposition of *G* in terms of cyclic
|
|
groups, which are the mod `p^e` subgroups for `p^e\|q`.
|
|
In particular *G* contains:
|
|
|
|
- the number *num* of components
|
|
|
|
- the generators
|
|
|
|
- the exponent *expo* of the group
|
|
|
|
It does *not* automatically precompute lookup tables
|
|
of discrete logarithms or numerical roots of unity, and can therefore
|
|
safely be called even with large *q*.
|
|
|
|
For implementation reasons, the largest prime factor of *q* must not
|
|
exceed `10^{12}` (an abort will be raised). This restriction could
|
|
be removed in the future.
|
|
|
|
.. function:: void dirichlet_subgroup_init(dirichlet_group_t H, const dirichlet_group_t G, ulong h)
|
|
|
|
Given an already computed group *G* mod `q`, initialize its subgroup *H*
|
|
defined mod `h\mid q`. Precomputed discrete log tables are inherited.
|
|
|
|
.. function:: void dirichlet_group_clear(dirichlet_group_t G)
|
|
|
|
Clears *G*. Remark this function does *not* clear the discrete logarithm
|
|
tables stored in *G* (which may be shared with another group).
|
|
|
|
.. function:: void dirichlet_group_dlog_precompute(dirichlet_group_t G, ulong num)
|
|
|
|
Precompute decomposition and tables for discrete log computations in *G*,
|
|
so as to minimize the complexity of *num* calls to discrete logarithms.
|
|
|
|
If *num* gets very large, the entire group may be indexed.
|
|
|
|
.. function:: void dirichlet_group_dlog_clear(dirichlet_group_t G, ulong num)
|
|
|
|
Clear discrete logarithm tables in *G*. When discrete logarithm tables are
|
|
shared with subgroups, those subgroups must be cleared before clearing the
|
|
tables.
|
|
|
|
Conrey elements
|
|
-------------------------------------------------------------------------------
|
|
|
|
.. type:: dirichlet_conrey_struct
|
|
|
|
.. type:: dirichlet_conrey_t
|
|
|
|
Represents elements of the unit group mod *q*, keeping both the
|
|
*number* (residue class) and *log* (exponents on the group
|
|
generators).
|
|
|
|
.. function:: void dirichlet_conrey_log(dirichlet_conrey_t x, const dirichlet_group_t G, ulong m)
|
|
|
|
Sets *x* to the element of number *m*, computing its log using discrete
|
|
logarithm in *G*.
|
|
|
|
.. function:: ulong dirichlet_conrey_exp(dirichlet_conrey_t x, const dirichlet_group_t G)
|
|
|
|
Compute the reverse operation.
|
|
|
|
.. function:: void dirichlet_conrey_one(dirichlet_conrey_t x, const dirichlet_group_t G)
|
|
|
|
Sets *x* to the *number* `1\in G`, having *log* `[0,\dots 0]`.
|
|
|
|
.. function:: void dirichlet_conrey_first_primitive(dirichlet_conrey_t x, const dirichlet_group_t G)
|
|
|
|
Sets *x* to the first primitive element of *G*, having *log* `[1,\dots 1]`,
|
|
or `[0, 1, \dots 1]` if `8\mid q`.
|
|
|
|
.. function:: void dirichlet_conrey_set(dirichlet_conrey_t x, const dirichlet_group_t G, const dirichlet_conrey_t y)
|
|
|
|
Sets *x* to the element *y*.
|
|
|
|
.. function:: int dirichlet_conrey_next(dirichlet_conrey_t x, const dirichlet_group_t G)
|
|
|
|
Sets *x* to the next conrey element in *G* with lexicographic ordering.
|
|
|
|
The return value
|
|
is the index of the last updated exponent of *x*, or *-1* if the last
|
|
element has been reached.
|
|
|
|
This function allows to iterate on the elements of *G* looping on their *log*.
|
|
Note that it produces elements in seemingly random *number* order.
|
|
|
|
The following template can be used to loop over all elements *x* in *G*::
|
|
|
|
acb_conrey_one(x, G);
|
|
do {
|
|
/* use Conrey element x */
|
|
} while (dirichlet_conrey_next(x, G) >= 0);
|
|
|
|
.. function:: int dirichlet_conrey_next_primitive(dirichlet_conrey_t x, const dirichlet_group_t G)
|
|
|
|
Same as :func:`dirichlet_conrey_next`, but jumps to the next element
|
|
corresponding to a primitive character of *G*.
|
|
|
|
.. function:: ulong dirichlet_index_conrey(const dirichlet_group_t G, const dirichlet_conrey_t x);
|
|
|
|
Returns the lexicographic index of *x* as an integer in `0\dots \varphi(q)`.
|
|
|
|
.. function:: void dirichlet_conrey_index(dirichlet_conrey_t x, const dirichlet_group_t G, ulong j)
|
|
|
|
Sets *x* to the Conrey element of lexicographic index *j*.
|
|
|
|
.. function:: int dirichlet_conrey_eq(const dirichlet_conrey_t x, const dirichlet_conrey_t y)
|
|
|
|
.. function:: int dirichlet_conrey_eq_deep(const dirichlet_group_t G, const dirichlet_conrey_t x, const dirichlet_conrey_t y)
|
|
|
|
Return 1 if *x* equals *y*.
|
|
The second version checks every byte of the representation and is intended for testing only.
|
|
|
|
Dirichlet characters
|
|
-------------------------------------------------------------------------------
|
|
|
|
Dirichlet characters take value in a finite cyclic group of roots of unity plus zero.
|
|
|
|
When evaluation functions return a *ulong*, this number corresponds to the
|
|
power of a primitive root of unity, the special value *DIRICHLET_CHI_NULL*
|
|
encoding the zero value.
|
|
|
|
The Conrey numbering scheme makes explicit the mathematical fact that
|
|
the group *G* is isomorphic to its dual, so that a character is described by
|
|
a *number*.
|
|
|
|
.. math::
|
|
|
|
\begin{array}{ccccc}
|
|
(\mathbb Z/q\mathbb Z)^\times \times (\mathbb Z/q\mathbb Z)^\times & \to & \bigoplus_i \mathbb Z/\phi_i\mathbb Z \times \mathbb Z/\phi_i\mathbb Z & \to &\mathbb C \\
|
|
(m,n) & \mapsto& (a_i,b_i) &\mapsto& \chi_q(m,n) = \exp(2i\pi\sum \frac{a_ib_i}{\phi_i} )
|
|
\end{array}
|
|
|
|
.. function:: ulong dirichlet_ui_pairing(const dirichlet_group_t G, ulong m, ulong n)
|
|
|
|
.. function:: ulong dirichlet_ui_pairing_conrey(const dirichlet_group_t G, const dirichlet_conrey_t a, const dirichlet_conrey_t b)
|
|
|
|
Compute the value of the Dirichlet pairing on numbers *m* and *n*, as
|
|
exponent modulo *G->expo*.
|
|
The second form takes the Conrey index *a* and *b*, and does not take discrete
|
|
logarithms.
|
|
|
|
The returned value is the numerator of the actual value exponent mod the group exponent *G->expo*.
|
|
|
|
Character type
|
|
-------------------------------------------------------------------------------
|
|
|
|
.. type:: dirichlet_char_struct
|
|
|
|
.. type:: dirichlet_char_t
|
|
|
|
Represents a Dirichlet character. This structure contains various
|
|
useful invariants such as the order, the parity and the conductor of the character.
|
|
|
|
An *dirichlet_char_t* is defined as an array of *dirichlet_char_struct*
|
|
of length 1, permitting it to be passed by reference.
|
|
|
|
.. function:: void dirichlet_char_init(dirichlet_char_t chi, const dirichlet_group_t G)
|
|
|
|
Initializes *chi* to an element of the group *G* and sets its value
|
|
to the principal character.
|
|
|
|
.. function:: void dirichlet_char_clear(dirichlet_char_t chi)
|
|
|
|
Clears *chi*.
|
|
|
|
.. function:: void dirichlet_char(dirichlet_char_t chi, const dirichlet_group_t G, ulong n)
|
|
|
|
Sets *chi* to the Dirichlet character of number *n*, using Conrey numbering scheme.
|
|
This function performs a discrete logarithm in *G*.
|
|
|
|
.. function:: void dirichlet_char_conrey(dirichlet_char_t chi, const dirichlet_group_t G, const dirichlet_conrey_t x)
|
|
|
|
Sets *chi* to the Dirichlet character corresponding to *x*.
|
|
|
|
.. function:: int dirichlet_char_eq(const dirichlet_char_t chi1, const dirichlet_char_t chi2)
|
|
|
|
.. function:: int dirichlet_char_eq_deep(const dirichlet_group_t G, const dirichlet_char_t chi1, const dirichlet_char_t chi2)
|
|
|
|
Return 1 if *chi1* equals *chi2*.
|
|
The second version checks every byte of the representation and is intended for testing only.
|
|
|
|
.. function:: int dirichlet_char_is_principal(const dirichlet_char_t chi)
|
|
|
|
Return 1 if *chi* is the principal character mod *q*.
|
|
|
|
.. function:: void dirichlet_char_one(dirichlet_char_t chi, const dirichlet_group_t G)
|
|
|
|
Sets *chi* to the principal character.
|
|
|
|
.. function:: void dirichlet_char_set(dirichlet_char_t chi1, const dirichlet_group_t G, const dirichlet_char_t chi2)
|
|
|
|
Sets *chi1* to the character *chi2*.
|
|
|
|
.. function:: int dirichlet_char_next(dirichlet_char_t chi, const dirichlet_group_t G)
|
|
|
|
Sets *x* to the next character in *G* with lexicographic Conrey ordering
|
|
(see :func:`dirichlet_conrey_next`). The return value
|
|
is the index of the last updated exponent of *x*, or *-1* if the last
|
|
element has been reached.
|
|
|
|
.. function:: int dirichlet_char_next_primitive(dirichlet_char_t chi, const dirichlet_group_t G)
|
|
|
|
Like :func:`dirichlet_char_next`, but only generates primitive
|
|
characters.
|
|
|
|
Character properties
|
|
-------------------------------------------------------------------------------
|
|
|
|
As a consequence of the Conrey numbering, all these numbers are available at the
|
|
level of *number* and Conrey *log* elements, and for *char*.
|
|
No discrete log computation is performed.
|
|
|
|
.. function:: ulong dirichlet_number_primitive(const dirichlet_group_t G)
|
|
|
|
Return the number of primitive elements in *G*.
|
|
|
|
.. function:: ulong dirichlet_ui_conductor(const dirichlet_group_t G, ulong a)
|
|
|
|
.. function:: ulong dirichlet_conrey_conductor(const dirichlet_group_t G, const dirichlet_conrey_t x)
|
|
|
|
.. function:: ulong dirichlet_char_conductor(const dirichlet_char_t chi)
|
|
|
|
Return the *conductor* of `\chi_q(a,\cdot)`, that is the smallest `r` dividing `q`
|
|
such `\chi_q(a,\cdot)` can be obtained as a character mod `r`.
|
|
This number is precomputed for the *char* type.
|
|
|
|
.. function:: int dirichlet_ui_parity(const dirichlet_group_t G, ulong a)
|
|
|
|
.. function:: int dirichlet_conrey_parity(const dirichlet_group_t G, const dirichlet_conrey_t x)
|
|
|
|
.. function:: int dirichlet_char_parity(const dirichlet_char_t chi)
|
|
|
|
Return the *parity* `\lambda` in `\{0,1\}` of `\chi_q(a,\cdot)`, such that
|
|
`\chi_q(a,-1)=(-1)^\lambda`.
|
|
This number is precomputed for the *char* type.
|
|
|
|
.. function:: ulong dirichlet_ui_order(const dirichlet_group_t G, ulong a)
|
|
|
|
.. function:: ulong dirichlet_conrey_order(const dirichlet_group_t G, const dirichlet_conrey_t x)
|
|
|
|
.. function:: ulong dirichlet_char_order(const dirichlet_char_t chi)
|
|
|
|
Return the order of `\chi_q(a,\cdot)` which is the order of `a\bmod q`.
|
|
This number is precomputed for the *char* type.
|
|
|
|
.. function:: int dirichlet_char_is_real(const dirichlet_char_t chi)
|
|
|
|
Return 1 if *chi* is a real character (iff it has order `\leq 2`).
|
|
|
|
Character evaluation
|
|
-------------------------------------------------------------------------------
|
|
|
|
The image of a Dirichlet character is a finite cyclic group. Dirichlet
|
|
character evaluations are exponents in this group.
|
|
|
|
.. function:: ulong dirichlet_ui_chi_conrey(const dirichlet_group_t G, const dirichlet_char_t chi, const dirichlet_conrey_t x)
|
|
|
|
.. function:: ulong dirichlet_ui_chi(const dirichlet_group_t G, const dirichlet_char_t chi, ulong n)
|
|
|
|
Compute that value `\chi(n)` as the exponent mod the order of `\chi`.
|
|
|
|
Vector evaluation
|
|
-------------------------------------------------------------------------------
|
|
|
|
.. function:: void dirichlet_ui_chi_vec(ulong * v, const dirichlet_group_t G, const dirichlet_char_t chi, slong nv)
|
|
|
|
Compute the list of exponent values *v[k]* for `0\leq k < nv`.
|
|
|
|
Character operations
|
|
-------------------------------------------------------------------------------
|
|
|
|
.. function:: void dirichlet_conrey_mul(dirichlet_conrey_t c, const dirichlet_group_t G, const dirichlet_conrey_t a, const dirichlet_conrey_t b)
|
|
|
|
.. function:: void dirichlet_char_mul(dirichlet_char_t chi12, const dirichlet_group_t G, const dirichlet_char_t chi1, const dirichlet_char_t chi2)
|
|
|
|
Multiply two characters in the same group.
|
|
|
|
.. function:: void dirichlet_conrey_pow(dirichlet_conrey_t c, const dirichlet_group_t G, const dirichlet_conrey_t a, ulong n)
|
|
|
|
Take the power of some character.
|
|
|
|
Implementation notes
|
|
-------------------------------------------------------------------------------
|
|
|
|
The current implementation introduces a *char* type which contains a *conrey*
|
|
log plus additional information which
|
|
|
|
- makes evaluation of a single character a bit faster
|
|
|
|
- has some initialization cost.
|
|
|
|
Even if it is straightforward to convert a *conrey* log to the
|
|
corresponding *char*, looping is faster at the
|
|
level of Conrey representation. Things can be improved on this aspect
|
|
but it makes code more intricate.
|