mirror of
https://github.com/vale981/arb
synced 2025-03-05 09:21:38 -05:00
298 lines
7.5 KiB
C
298 lines
7.5 KiB
C
/*
|
|
Copyright (C) 2014 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_modular.h"
|
|
|
|
static void
|
|
acb_mul_4th_root(acb_t y, const acb_t x, int r, slong prec)
|
|
{
|
|
r &= 7;
|
|
|
|
if (r == 0)
|
|
{
|
|
acb_set(y, x);
|
|
}
|
|
else if (r == 4)
|
|
{
|
|
acb_neg(y, x);
|
|
}
|
|
else if (r == 2)
|
|
{
|
|
acb_mul_onei(y, x);
|
|
}
|
|
else if (r == 6)
|
|
{
|
|
acb_mul_onei(y, x);
|
|
acb_neg(y, y);
|
|
}
|
|
else
|
|
{
|
|
fmpq_t t;
|
|
fmpq_init(t);
|
|
fmpq_set_si(t, r, 4);
|
|
arb_sin_cos_pi_fmpq(acb_imagref(y), acb_realref(y), t, prec);
|
|
acb_mul(y, y, x, prec);
|
|
fmpq_clear(t);
|
|
}
|
|
}
|
|
|
|
void
|
|
acb_modular_theta(acb_t theta1, acb_t theta2,
|
|
acb_t theta3, acb_t theta4, const acb_t z, const acb_t tau,
|
|
slong prec)
|
|
{
|
|
fmpq_t t;
|
|
psl2z_t g;
|
|
arf_t one_minus_eps;
|
|
acb_t z_prime, tau_prime, q, q4, w, A, B;
|
|
acb_struct thetas[4];
|
|
int w_is_unit, R[4], S[4], C;
|
|
int t1r, t1i, t2r, t2i, t3r, t4r;
|
|
|
|
if (!acb_is_finite(z) || !acb_is_finite(tau) ||
|
|
!arb_is_positive(acb_imagref(tau)))
|
|
{
|
|
acb_indeterminate(theta1);
|
|
acb_indeterminate(theta2);
|
|
acb_indeterminate(theta3);
|
|
acb_indeterminate(theta4);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
special cases when real(tau) is an integer n:
|
|
|
|
z is real:
|
|
theta1 real if n mod 4 = 0
|
|
theta1 imaginary if n mod 4 = 2
|
|
theta2 real if n mod 4 = 0
|
|
theta2 imaginary if n mod 4 = 2
|
|
theta3 real always
|
|
theta4 real always
|
|
|
|
z is imaginary:
|
|
theta1 real if n mod 4 = 2
|
|
theta1 imaginary if n mod 4 = 0
|
|
theta2 real if n mod 4 = 0
|
|
theta2 imaginary if n mod 4 = 2
|
|
theta3 real always
|
|
theta4 real always
|
|
*/
|
|
t1r = t1i = t2r = t2i = t3r = t4r = 0;
|
|
|
|
if (arb_is_int(acb_realref(tau)))
|
|
{
|
|
int val;
|
|
|
|
if (arb_is_int_2exp_si(acb_realref(tau), 2))
|
|
val = 2;
|
|
else if (arb_is_int_2exp_si(acb_realref(tau), 1))
|
|
val = 1;
|
|
else
|
|
val = 0;
|
|
|
|
if (arb_is_zero(acb_imagref(z)))
|
|
{
|
|
t3r = t4r = 1;
|
|
if (val == 2) t1r = t2r = 1;
|
|
if (val == 1) t1i = t2i = 1;
|
|
}
|
|
|
|
if (arb_is_zero(acb_realref(z)))
|
|
{
|
|
t3r = t4r = 1;
|
|
if (val == 2) t1i = t2r = 1;
|
|
if (val == 1) t1r = t2i = 1;
|
|
}
|
|
}
|
|
|
|
psl2z_init(g);
|
|
fmpq_init(t);
|
|
arf_init(one_minus_eps);
|
|
acb_init(z_prime);
|
|
acb_init(tau_prime);
|
|
acb_init(q);
|
|
acb_init(q4);
|
|
acb_init(w);
|
|
acb_init(thetas + 0);
|
|
acb_init(thetas + 1);
|
|
acb_init(thetas + 2);
|
|
acb_init(thetas + 3);
|
|
acb_init(A);
|
|
acb_init(B);
|
|
|
|
/* move tau to the fundamental domain */
|
|
arf_set_ui_2exp_si(one_minus_eps, 63, -6);
|
|
acb_modular_fundamental_domain_approx(tau_prime, g, tau,
|
|
one_minus_eps, prec);
|
|
|
|
/* compute transformation parameters */
|
|
acb_modular_theta_transform(R, S, &C, g);
|
|
|
|
if (C == 0)
|
|
{
|
|
acb_set(z_prime, z);
|
|
acb_one(A);
|
|
}
|
|
else
|
|
{
|
|
/* B = 1/(c*tau+d) (temporarily) */
|
|
acb_mul_fmpz(B, tau, &g->c, prec);
|
|
acb_add_fmpz(B, B, &g->d, prec);
|
|
acb_inv(B, B, prec);
|
|
|
|
/* -z/(c*tau+d) */
|
|
acb_mul(z_prime, z, B, prec);
|
|
acb_neg(z_prime, z_prime);
|
|
|
|
/* A = sqrt(i/(c*tau+d)) */
|
|
acb_mul_onei(A, B);
|
|
acb_sqrt(A, A, prec);
|
|
|
|
/* B = exp(-pi i c z^2/(c*tau+d)) */
|
|
/* we first compute the argument here */
|
|
if (acb_is_zero(z))
|
|
{
|
|
acb_zero(B);
|
|
}
|
|
else
|
|
{
|
|
acb_mul(B, z_prime, z, prec);
|
|
acb_mul_fmpz(B, B, &g->c, prec);
|
|
}
|
|
}
|
|
|
|
/* reduce z_prime modulo tau_prime if the imaginary part is large */
|
|
if (arf_cmpabs_2exp_si(arb_midref(acb_imagref(z_prime)), 4) > 0)
|
|
{
|
|
arb_t nn;
|
|
arb_init(nn);
|
|
arf_div(arb_midref(nn), arb_midref(acb_imagref(z_prime)),
|
|
arb_midref(acb_imagref(tau_prime)), prec, ARF_RND_DOWN);
|
|
arf_mul_2exp_si(arb_midref(nn), arb_midref(nn), 1);
|
|
arf_add_ui(arb_midref(nn), arb_midref(nn), 1, prec, ARF_RND_DOWN);
|
|
arf_mul_2exp_si(arb_midref(nn), arb_midref(nn), -1);
|
|
arf_floor(arb_midref(nn), arb_midref(nn));
|
|
|
|
/* transform z_prime further */
|
|
acb_submul_arb(z_prime, tau_prime, nn, prec);
|
|
|
|
/* add -tau n^2 - 2nz to B */
|
|
arb_mul_2exp_si(nn, nn, 1);
|
|
acb_submul_arb(B, z_prime, nn, prec);
|
|
arb_mul_2exp_si(nn, nn, -1);
|
|
arb_sqr(nn, nn, prec);
|
|
acb_submul_arb(B, tau_prime, nn, prec);
|
|
|
|
/* theta1, theta4 pick up factors (-1)^n */
|
|
if (!arf_is_int_2exp_si(arb_midref(nn), 1))
|
|
{
|
|
int i;
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
if (S[i] == 0 || S[i] == 3)
|
|
R[i] += 4;
|
|
}
|
|
}
|
|
|
|
C = 1;
|
|
|
|
arb_clear(nn);
|
|
}
|
|
|
|
if (C != 0)
|
|
acb_exp_pi_i(B, B, prec);
|
|
|
|
/* compute q_{1/4}, q */
|
|
acb_mul_2exp_si(q4, tau_prime, -2);
|
|
acb_exp_pi_i(q4, q4, prec);
|
|
acb_pow_ui(q, q4, 4, prec);
|
|
|
|
/* compute w */
|
|
acb_exp_pi_i(w, z_prime, prec);
|
|
w_is_unit = arb_is_zero(acb_imagref(z_prime));
|
|
|
|
/* evaluate theta functions of transformed variables */
|
|
acb_modular_theta_sum(thetas + 0, thetas + 1, thetas + 2, thetas + 3,
|
|
w, w_is_unit, q, 1, prec);
|
|
acb_mul(thetas + 0, thetas + 0, q4, prec);
|
|
acb_mul(thetas + 1, thetas + 1, q4, prec);
|
|
|
|
/* multiply by roots of unity */
|
|
acb_mul_4th_root(theta1, thetas + S[0], R[0], prec);
|
|
acb_mul_4th_root(theta2, thetas + S[1], R[1], prec);
|
|
acb_mul_4th_root(theta3, thetas + S[2], R[2], prec);
|
|
acb_mul_4th_root(theta4, thetas + S[3], R[3], prec);
|
|
|
|
if (C != 0)
|
|
{
|
|
acb_mul(A, A, B, prec);
|
|
acb_mul(theta1, theta1, A, prec);
|
|
acb_mul(theta2, theta2, A, prec);
|
|
acb_mul(theta3, theta3, A, prec);
|
|
acb_mul(theta4, theta4, A, prec);
|
|
}
|
|
|
|
if (t1r) arb_zero(acb_imagref(theta1));
|
|
if (t1i) arb_zero(acb_realref(theta1));
|
|
if (t2r) arb_zero(acb_imagref(theta2));
|
|
if (t2i) arb_zero(acb_realref(theta2));
|
|
if (t3r) arb_zero(acb_imagref(theta3));
|
|
if (t4r) arb_zero(acb_imagref(theta4));
|
|
|
|
psl2z_clear(g);
|
|
fmpq_clear(t);
|
|
arf_clear(one_minus_eps);
|
|
acb_clear(z_prime);
|
|
acb_clear(tau_prime);
|
|
acb_clear(q);
|
|
acb_clear(q4);
|
|
acb_clear(w);
|
|
acb_clear(thetas + 0);
|
|
acb_clear(thetas + 1);
|
|
acb_clear(thetas + 2);
|
|
acb_clear(thetas + 3);
|
|
acb_clear(A);
|
|
acb_clear(B);
|
|
}
|
|
|
|
void
|
|
acb_modular_theta_notransform(acb_t theta1, acb_t theta2,
|
|
acb_t theta3, acb_t theta4, const acb_t z, const acb_t tau,
|
|
slong prec)
|
|
{
|
|
acb_t q, q4, w;
|
|
int w_is_unit;
|
|
|
|
acb_init(q);
|
|
acb_init(q4);
|
|
acb_init(w);
|
|
|
|
/* compute q_{1/4}, q */
|
|
acb_mul_2exp_si(q4, tau, -2);
|
|
acb_exp_pi_i(q4, q4, prec);
|
|
acb_pow_ui(q, q4, 4, prec);
|
|
|
|
/* compute w */
|
|
acb_exp_pi_i(w, z, prec);
|
|
w_is_unit = arb_is_zero(acb_imagref(z));
|
|
|
|
/* evaluate theta functions */
|
|
acb_modular_theta_sum(theta1, theta2, theta3, theta4,
|
|
w, w_is_unit, q, 1, prec);
|
|
acb_mul(theta1, theta1, q4, prec);
|
|
acb_mul(theta2, theta2, q4, prec);
|
|
|
|
acb_clear(q);
|
|
acb_clear(q4);
|
|
acb_clear(w);
|
|
}
|
|
|