arb/acb_elliptic/test/t-rg.c
Tommy Hofmann 6bf072eb59 Replace abort with flint_abort.
This will allow us to not loose the julia session on error.
See also https://github.com/wbhart/flint2/pull/243
2017-02-28 16:52:57 +01:00

134 lines
4.6 KiB
C

/*
Copyright (C) 2017 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_elliptic.h"
/* Test input from Carlson's paper and checked with mpmath. */
static const double testdata_rg[7][8] = {
{0.0, 0.0, 16.0, 0.0, 16.0, 0.0, 3.1415926535897932385, 0.0},
{2.0, 0.0, 3.0, 0.0, 4.0, 0.0, 1.7255030280692277601, 0.0},
{0.0, 0.0, 0.0, 1.0, 0.0, -1.0, 0.4236065423969895433, 0.0},
{-1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.44660591677018372657, 0.70768352357515390073},
{0.0, -1.0, -1.0, 1.0, 0.0, 1.0, 0.36023392184473309034, 0.40348623401722113741},
{0.0, 0.0, 0.0796, 0.0, 4.0, 0.0, 1.0284758090288040022, 0.0},
/* more tests */
{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
};
int main()
{
slong iter;
flint_rand_t state;
flint_printf("rg....");
fflush(stdout);
flint_randinit(state);
for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++)
{
acb_t x, y, z, r1, r2;
slong prec1, prec2;
prec1 = 2 + n_randint(state, 300);
prec2 = 2 + n_randint(state, 300);
acb_init(x);
acb_init(y);
acb_init(z);
acb_init(r1);
acb_init(r2);
if (iter == 0)
{
slong k;
for (k = 0; k < 7; k++)
{
acb_set_d_d(x, testdata_rg[k][0], testdata_rg[k][1]);
acb_set_d_d(y, testdata_rg[k][2], testdata_rg[k][3]);
acb_set_d_d(z, testdata_rg[k][4], testdata_rg[k][5]);
acb_set_d_d(r2, testdata_rg[k][6], testdata_rg[k][7]);
mag_set_d(arb_radref(acb_realref(r2)), 1e-14 * fabs(testdata_rg[k][6]));
mag_set_d(arb_radref(acb_imagref(r2)), 1e-14 * fabs(testdata_rg[k][7]));
for (prec1 = 16; prec1 <= 256; prec1 *= 2)
{
acb_elliptic_rg(r1, x, y, z, 0, prec1);
if (!acb_overlaps(r1, r2) || acb_rel_accuracy_bits(r1) < prec1 * 0.9 - 10)
{
flint_printf("FAIL: overlap (testdata rg)\n\n");
flint_printf("prec = %wd, accuracy = %wd\n\n", prec1, acb_rel_accuracy_bits(r1));
flint_printf("x = "); acb_printd(x, 30); flint_printf("\n\n");
flint_printf("y = "); acb_printd(y, 30); flint_printf("\n\n");
flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n");
flint_printf("r1 = "); acb_printd(r1, 30); flint_printf("\n\n");
flint_printf("r2 = "); acb_printd(r2, 30); flint_printf("\n\n");
flint_abort();
}
}
}
}
acb_randtest(x, state, 1 + n_randint(state, 300), 1 + n_randint(state, 30));
acb_randtest(y, state, 1 + n_randint(state, 300), 1 + n_randint(state, 30));
acb_randtest(z, state, 1 + n_randint(state, 300), 1 + n_randint(state, 30));
acb_elliptic_rg(r1, x, y, z, 0, prec1);
switch (n_randint(state, 6))
{
case 0:
acb_elliptic_rg(r2, x, y, z, 0, prec2);
break;
case 1:
acb_elliptic_rg(r2, x, z, y, 0, prec2);
break;
case 2:
acb_elliptic_rg(r2, y, x, z, 0, prec2);
break;
case 3:
acb_elliptic_rg(r2, y, z, x, 0, prec2);
break;
case 4:
acb_elliptic_rg(r2, z, x, y, 0, prec2);
break;
default:
acb_elliptic_rg(r2, z, y, x, 0, prec2);
break;
}
if (!acb_overlaps(r1, r2))
{
flint_printf("FAIL: overlap\n\n");
flint_printf("x = "); acb_printd(x, 30); flint_printf("\n\n");
flint_printf("y = "); acb_printd(y, 30); flint_printf("\n\n");
flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n");
flint_printf("r1 = "); acb_printd(r1, 30); flint_printf("\n\n");
flint_printf("r2 = "); acb_printd(r2, 30); flint_printf("\n\n");
flint_abort();
}
acb_clear(x);
acb_clear(y);
acb_clear(z);
acb_clear(r1);
acb_clear(r2);
}
flint_randclear(state);
flint_cleanup();
flint_printf("PASS\n");
return EXIT_SUCCESS;
}