arb/fmpcb_calc/integrate_taylor.c
2013-10-03 13:03:55 +02:00

219 lines
7 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2013 Fredrik Johansson
******************************************************************************/
#include "fmpcb_calc.h"
#include "math.h"
int
fmpcb_calc_integrate_taylor(fmpcb_t res,
fmpcb_calc_func_t func, void * param,
const fmpcb_t a, const fmpcb_t b,
const fmpr_t inner_radius,
const fmpr_t outer_radius,
long accuracy_goal, long prec)
{
long num_steps, step, N, bp;
int result;
fmpcb_t delta, m, x, y1, y2, sum;
fmpcb_ptr taylor_poly;
fmpr_t err;
fmpcb_init(delta);
fmpcb_init(m);
fmpcb_init(x);
fmpcb_init(y1);
fmpcb_init(y2);
fmpcb_init(sum);
fmpr_init(err);
fmpcb_sub(delta, b, a, prec);
/* precision used for bounds calculations */
bp = FMPRB_RAD_PREC;
/* compute the number of steps */
{
fmpr_t t;
fmpr_init(t);
fmpcb_get_abs_ubound_fmpr(t, delta, bp);
fmpr_div(t, t, inner_radius, bp, FMPR_RND_UP);
fmpr_mul_2exp_si(t, t, -1);
num_steps = (long) (fmpr_get_d(t, FMPR_RND_UP) + 1.0);
/* make sure it's not something absurd */
num_steps = FLINT_MIN(num_steps, 10 * prec);
num_steps = FLINT_MAX(num_steps, 1);
fmpr_clear(t);
}
result = FMPRB_CALC_SUCCESS;
fmpcb_zero(sum);
for (step = 0; step < num_steps; step++)
{
/* midpoint of subinterval */
fmpcb_mul_ui(m, delta, 2 * step + 1, prec);
fmpcb_div_ui(m, m, 2 * num_steps, prec);
fmpcb_add(m, m, a, prec);
if (fmprb_calc_verbose)
{
printf("integration point %ld/%ld: ", 2 * step + 1, 2 * num_steps);
fmpcb_printd(m, 15); printf("\n");
}
/* evaluate at +/- x */
/* TODO: exactify m, and include error in x? */
fmpcb_div_ui(x, delta, 2 * num_steps, prec);
/* compute bounds and number of terms to use */
{
fmprb_t cbound, xbound, rbound;
fmpr_t C, D, R, X, T;
double DD, TT, NN;
fmprb_init(cbound);
fmprb_init(xbound);
fmprb_init(rbound);
fmpr_init(C);
fmpr_init(D);
fmpr_init(R);
fmpr_init(X);
fmpr_init(T);
/* R is the outer radius */
fmpr_set(R, outer_radius);
/* X = upper bound for |x| */
fmpcb_get_abs_ubound_fmpr(X, x, bp);
fmprb_set_fmpr(xbound, X);
/* Compute C(m,R). Important subtlety: due to rounding when
computing m, we will in general be farther than R away from
the integration path. But since fmpcb_calc_cauchy_bound
actually integrates over the area traced by a complex
interval, it will catch any extra singularities (giving
an infinite bound). */
fmprb_set_fmpr(rbound, outer_radius);
fmpcb_calc_cauchy_bound(cbound, func, param, m, rbound, 8, bp);
fmpr_add(C, fmprb_midref(cbound), fmprb_radref(cbound), bp, FMPR_RND_UP);
/* Sanity check: we need C < inf and R > X */
if (fmpr_is_finite(C) && fmpr_cmp(R, X) > 0)
{
/* Compute upper bound for D = C * R * X / (R - X) */
fmpr_mul(D, C, R, bp, FMPR_RND_UP);
fmpr_mul(D, D, X, bp, FMPR_RND_UP);
fmpr_sub(T, R, X, bp, FMPR_RND_DOWN);
fmpr_div(D, D, T, bp, FMPR_RND_UP);
/* Compute upper bound for T = (X / R) */
fmpr_div(T, X, R, bp, FMPR_RND_UP);
/* Choose N */
/* TODO: use fmpr arithmetic to avoid overflow */
/* TODO: use relative accuracy (look at |f(m)|?) */
DD = fmpr_get_d(D, FMPR_RND_UP);
TT = fmpr_get_d(T, FMPR_RND_UP);
NN = -(accuracy_goal * 0.69314718055994530942 + log(DD)) / log(TT);
N = NN + 0.5;
N = FLINT_MIN(N, 100 * prec);
N = FLINT_MAX(N, 1);
/* Tail bound: D / (N + 1) * T^N */
fmpr_pow_sloppy_ui(T, T, N, bp, FMPR_RND_UP);
fmpr_mul(D, D, T, bp, FMPR_RND_UP);
fmpr_div_ui(err, D, N + 1, bp, FMPR_RND_UP);
}
else
{
N = 1;
fmpr_pos_inf(err);
result = FMPRB_CALC_NO_CONVERGENCE;
}
if (fmprb_calc_verbose)
{
printf("N = %ld; bound: ", N); fmpr_printd(err, 15); printf("\n");
printf("R: "); fmpr_printd(R, 15); printf("\n");
printf("C: "); fmpr_printd(C, 15); printf("\n");
printf("X: "); fmpr_printd(X, 15); printf("\n");
}
fmprb_clear(cbound);
fmprb_clear(xbound);
fmprb_clear(rbound);
fmpr_clear(C);
fmpr_clear(D);
fmpr_clear(R);
fmpr_clear(X);
fmpr_clear(T);
}
/* evaluate Taylor polynomial */
taylor_poly = _fmpcb_vec_init(N + 1);
func(taylor_poly, m, param, N, prec);
_fmpcb_poly_integral(taylor_poly, taylor_poly, N + 1, prec);
_fmpcb_poly_evaluate(y2, taylor_poly, N + 1, x, prec);
fmpcb_neg(x, x);
_fmpcb_poly_evaluate(y1, taylor_poly, N + 1, x, prec);
fmpcb_neg(x, x);
/* add truncation error */
fmprb_add_error_fmpr(fmpcb_realref(y1), err);
fmprb_add_error_fmpr(fmpcb_imagref(y1), err);
fmprb_add_error_fmpr(fmpcb_realref(y2), err);
fmprb_add_error_fmpr(fmpcb_imagref(y2), err);
fmpcb_add(sum, sum, y2, prec);
fmpcb_sub(sum, sum, y1, prec);
if (fmprb_calc_verbose)
{
printf("values: ");
fmpcb_printd(y1, 15); printf(" ");
fmpcb_printd(y2, 15); printf("\n");
}
_fmpcb_vec_clear(taylor_poly, N + 1);
if (result == FMPRB_CALC_NO_CONVERGENCE)
break;
}
fmpcb_set(res, sum);
fmpcb_clear(delta);
fmpcb_clear(m);
fmpcb_clear(x);
fmpcb_clear(y1);
fmpcb_clear(y2);
fmpcb_clear(sum);
fmpr_clear(err);
return result;
}