arb/examples/poly_roots.c

404 lines
12 KiB
C

/* This file is public domain. Author: Fredrik Johansson. */
#include <string.h>
#include <ctype.h>
#include "acb.h"
#include "acb_poly.h"
#include "flint/arith.h"
#include "flint/profiler.h"
int check_accuracy(acb_ptr vec, slong len, slong prec)
{
slong i;
for (i = 0; i < len; i++)
{
if (mag_cmp_2exp_si(arb_radref(acb_realref(vec + i)), -prec) >= 0
|| mag_cmp_2exp_si(arb_radref(acb_imagref(vec + i)), -prec) >= 0)
return 0;
}
return 1;
}
slong fmpz_poly_deflation(const fmpz_poly_t input)
{
slong i, coeff, deflation;
if (input->length <= 1)
return input->length;
coeff = 1;
while (fmpz_is_zero(input->coeffs + coeff))
coeff++;
deflation = n_gcd(input->length - 1, coeff);
while ((deflation > 1) && (coeff + deflation < input->length))
{
for (i = 0; i < deflation - 1; i++)
{
coeff++;
if (!fmpz_is_zero(input->coeffs + coeff))
deflation = n_gcd(coeff, deflation);
}
if (i == deflation - 1)
coeff++;
}
return deflation;
}
void
fmpz_poly_deflate(fmpz_poly_t result, const fmpz_poly_t input, ulong deflation)
{
slong res_length, i;
if (deflation == 0)
{
flint_printf("Exception (fmpz_poly_deflate). Division by zero.\n");
abort();
}
if (input->length <= 1 || deflation == 1)
{
fmpz_poly_set(result, input);
return;
}
res_length = (input->length - 1) / deflation + 1;
fmpz_poly_fit_length(result, res_length);
for (i = 0; i < res_length; i++)
fmpz_set(result->coeffs + i, input->coeffs + i*deflation);
result->length = res_length;
}
void
fmpz_poly_complex_roots_squarefree(const fmpz_poly_t poly,
slong initial_prec,
slong target_prec,
slong print_digits)
{
slong i, j, prec, deg, deg_deflated, isolated, maxiter, deflation;
acb_poly_t cpoly, cpoly_deflated;
fmpz_poly_t poly_deflated;
acb_ptr roots, roots_deflated;
int removed_zero;
if (fmpz_poly_degree(poly) < 1)
return;
fmpz_poly_init(poly_deflated);
acb_poly_init(cpoly);
acb_poly_init(cpoly_deflated);
/* try to write poly as poly_deflated(x^deflation), possibly multiplied by x */
removed_zero = fmpz_is_zero(poly->coeffs);
if (removed_zero)
fmpz_poly_shift_right(poly_deflated, poly, 1);
else
fmpz_poly_set(poly_deflated, poly);
deflation = fmpz_poly_deflation(poly_deflated);
fmpz_poly_deflate(poly_deflated, poly_deflated, deflation);
deg = fmpz_poly_degree(poly);
deg_deflated = fmpz_poly_degree(poly_deflated);
flint_printf("searching for %wd roots, %wd deflated\n", deg, deg_deflated);
roots = _acb_vec_init(deg);
roots_deflated = _acb_vec_init(deg_deflated);
for (prec = initial_prec; ; prec *= 2)
{
acb_poly_set_fmpz_poly(cpoly_deflated, poly_deflated, prec);
maxiter = FLINT_MIN(FLINT_MAX(deg_deflated, 32), prec);
TIMEIT_ONCE_START
flint_printf("prec=%wd: ", prec);
isolated = acb_poly_find_roots(roots_deflated, cpoly_deflated,
prec == initial_prec ? NULL : roots_deflated, maxiter, prec);
flint_printf("%wd isolated roots | ", isolated);
TIMEIT_ONCE_STOP
if (isolated == deg_deflated)
{
if (!check_accuracy(roots_deflated, deg_deflated, target_prec))
continue;
if (deflation == 1)
{
_acb_vec_set(roots, roots_deflated, deg_deflated);
}
else /* compute all nth roots */
{
acb_t w, w2;
acb_init(w);
acb_init(w2);
acb_unit_root(w, deflation, prec);
acb_unit_root(w2, 2 * deflation, prec);
for (i = 0; i < deg_deflated; i++)
{
if (arf_sgn(arb_midref(acb_realref(roots_deflated + i))) > 0)
{
acb_root_ui(roots + i * deflation,
roots_deflated + i, deflation, prec);
}
else
{
acb_neg(roots + i * deflation, roots_deflated + i);
acb_root_ui(roots + i * deflation,
roots + i * deflation, deflation, prec);
acb_mul(roots + i * deflation,
roots + i * deflation, w2, prec);
}
for (j = 1; j < deflation; j++)
{
acb_mul(roots + i * deflation + j,
roots + i * deflation + j - 1, w, prec);
}
}
acb_clear(w);
acb_clear(w2);
}
/* by assumption that poly is squarefree, must be just one */
if (removed_zero)
acb_zero(roots + deg_deflated * deflation);
if (!check_accuracy(roots, deg, target_prec))
continue;
acb_poly_set_fmpz_poly(cpoly, poly, prec);
if (!acb_poly_validate_real_roots(roots, cpoly, prec))
continue;
for (i = 0; i < deg; i++)
{
if (arb_contains_zero(acb_imagref(roots + i)))
arb_zero(acb_imagref(roots + i));
}
flint_printf("done!\n");
break;
}
}
if (print_digits != 0)
{
_acb_vec_sort_pretty(roots, deg);
for (i = 0; i < deg; i++)
{
acb_printn(roots + i, print_digits, 0);
flint_printf("\n");
}
}
fmpz_poly_clear(poly_deflated);
acb_poly_clear(cpoly);
acb_poly_clear(cpoly_deflated);
_acb_vec_clear(roots, deg);
_acb_vec_clear(roots_deflated, deg_deflated);
}
int main(int argc, char *argv[])
{
fmpz_poly_t f, g;
fmpz_poly_factor_t fac;
fmpz_t t;
slong compd, printd, i, j;
if (argc < 2)
{
flint_printf("poly_roots [-refine d] [-print d] <poly>\n\n");
flint_printf("Isolates all the complex roots of a polynomial with integer coefficients.\n\n");
flint_printf("If -refine d is passed, the roots are refined to an absolute tolerance\n");
flint_printf("better than 10^(-d). By default, the roots are only computed to sufficient\n");
flint_printf("accuracy to isolate them. The refinement is not currently done efficiently.\n\n");
flint_printf("If -print d is passed, the computed roots are printed to d decimals.\n");
flint_printf("By default, the roots are not printed.\n\n");
flint_printf("The polynomial can be specified by passing the following as <poly>:\n\n");
flint_printf("a <n> Easy polynomial 1 + 2x + ... + (n+1)x^n\n");
flint_printf("t <n> Chebyshev polynomial T_n\n");
flint_printf("u <n> Chebyshev polynomial U_n\n");
flint_printf("p <n> Legendre polynomial P_n\n");
flint_printf("c <n> Cyclotomic polynomial Phi_n\n");
flint_printf("s <n> Swinnerton-Dyer polynomial S_n\n");
flint_printf("b <n> Bernoulli polynomial B_n\n");
flint_printf("w <n> Wilkinson polynomial W_n\n");
flint_printf("e <n> Taylor series of exp(x) truncated to degree n\n");
flint_printf("m <n> <m> The Mignotte-like polynomial x^n + (100x+1)^m, n > m\n");
flint_printf("coeffs <c0 c1 ... cn> c0 + c1 x + ... + cn x^n\n\n");
flint_printf("Concatenate to multiply polynomials, e.g.: p 5 t 6 coeffs 1 2 3\n");
flint_printf("for P_5(x)*T_6(x)*(1+2x+3x^2)\n\n");
return 1;
}
compd = 0;
printd = 0;
fmpz_poly_init(f);
fmpz_poly_init(g);
fmpz_init(t);
fmpz_poly_one(f);
for (i = 1; i < argc; i++)
{
if (!strcmp(argv[i], "-refine"))
{
compd = atol(argv[i+1]);
i++;
}
else if (!strcmp(argv[i], "-print"))
{
printd = atol(argv[i+1]);
i++;
}
else if (!strcmp(argv[i], "a"))
{
slong n = atol(argv[i+1]);
fmpz_poly_zero(g);
for (j = 0; j <= n; j++)
fmpz_poly_set_coeff_ui(g, j, j+1);
fmpz_poly_mul(f, f, g);
i++;
}
else if (!strcmp(argv[i], "t"))
{
arith_chebyshev_t_polynomial(g, atol(argv[i+1]));
fmpz_poly_mul(f, f, g);
i++;
}
else if (!strcmp(argv[i], "u"))
{
arith_chebyshev_u_polynomial(g, atol(argv[i+1]));
fmpz_poly_mul(f, f, g);
i++;
}
else if (!strcmp(argv[i], "p"))
{
fmpq_poly_t h;
fmpq_poly_init(h);
arith_legendre_polynomial(h, atol(argv[i+1]));
fmpq_poly_get_numerator(g, h);
fmpz_poly_mul(f, f, g);
fmpq_poly_clear(h);
i++;
}
else if (!strcmp(argv[i], "c"))
{
arith_cyclotomic_polynomial(g, atol(argv[i+1]));
fmpz_poly_mul(f, f, g);
i++;
}
else if (!strcmp(argv[i], "s"))
{
arith_swinnerton_dyer_polynomial(g, atol(argv[i+1]));
fmpz_poly_mul(f, f, g);
i++;
}
else if (!strcmp(argv[i], "b"))
{
fmpq_poly_t h;
fmpq_poly_init(h);
arith_bernoulli_polynomial(h, atol(argv[i+1]));
fmpq_poly_get_numerator(g, h);
fmpz_poly_mul(f, f, g);
fmpq_poly_clear(h);
i++;
}
else if (!strcmp(argv[i], "w"))
{
slong n = atol(argv[i+1]);
fmpz_poly_zero(g);
fmpz_poly_fit_length(g, n+2);
arith_stirling_number_1_vec(g->coeffs, n+1, n+2);
_fmpz_poly_set_length(g, n+2);
fmpz_poly_shift_right(g, g, 1);
fmpz_poly_mul(f, f, g);
i++;
}
else if (!strcmp(argv[i], "e"))
{
fmpq_poly_t h;
fmpq_poly_init(h);
fmpq_poly_set_coeff_si(h, 0, 0);
fmpq_poly_set_coeff_si(h, 1, 1);
fmpq_poly_exp_series(h, h, atol(argv[i+1]) + 1);
fmpq_poly_get_numerator(g, h);
fmpz_poly_mul(f, f, g);
fmpq_poly_clear(h);
i++;
}
else if (!strcmp(argv[i], "m"))
{
fmpz_poly_zero(g);
fmpz_poly_set_coeff_ui(g, 0, 1);
fmpz_poly_set_coeff_ui(g, 1, 100);
fmpz_poly_pow(g, g, atol(argv[i+2]));
fmpz_poly_set_coeff_ui(g, atol(argv[i+1]), 1);
fmpz_poly_mul(f, f, g);
i += 2;
}
else if (!strcmp(argv[i], "coeffs"))
{
fmpz_poly_zero(g);
i++;
j = 0;
while (i < argc)
{
if (fmpz_set_str(t, argv[i], 10) != 0)
{
i--;
break;
}
fmpz_poly_set_coeff_fmpz(g, j, t);
i++;
j++;
}
fmpz_poly_mul(f, f, g);
}
}
fmpz_poly_factor_init(fac);
flint_printf("computing squarefree factorization...\n");
TIMEIT_ONCE_START
fmpz_poly_factor_squarefree(fac, f);
TIMEIT_ONCE_STOP
TIMEIT_ONCE_START
for (i = 0; i < fac->num; i++)
{
flint_printf("roots with multiplicity %wd\n", fac->exp[i]);
fmpz_poly_complex_roots_squarefree(fac->p + i,
32, compd * 3.32193 + 2, printd);
}
TIMEIT_ONCE_STOP
fmpz_poly_factor_clear(fac);
fmpz_poly_clear(f);
fmpz_poly_clear(g);
fmpz_clear(t);
flint_cleanup();
return EXIT_SUCCESS;
}