mirror of
https://github.com/vale981/arb
synced 2025-03-05 09:21:38 -05:00
131 lines
3.5 KiB
C
131 lines
3.5 KiB
C
/*
|
|
Copyright (C) 2018 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_mat.h"
|
|
|
|
static void
|
|
acb_approx_mul(acb_t res, const acb_t x, const acb_t y, slong prec)
|
|
{
|
|
arf_complex_mul(arb_midref(acb_realref(res)), arb_midref(acb_imagref(res)),
|
|
arb_midref(acb_realref(x)), arb_midref(acb_imagref(x)),
|
|
arb_midref(acb_realref(y)), arb_midref(acb_imagref(y)), prec, ARB_RND);
|
|
}
|
|
|
|
/* note: the tmp variable t should have zero radius */
|
|
static void
|
|
acb_approx_div(acb_t z, const acb_t x, const acb_t y, acb_t t, slong prec)
|
|
{
|
|
arf_set(arb_midref(acb_realref(t)), arb_midref(acb_realref(y)));
|
|
arf_set(arb_midref(acb_imagref(t)), arb_midref(acb_imagref(y)));
|
|
|
|
acb_inv(t, t, prec);
|
|
|
|
mag_zero(arb_radref(acb_realref(t)));
|
|
mag_zero(arb_radref(acb_imagref(t)));
|
|
|
|
acb_approx_mul(z, x, t, prec);
|
|
}
|
|
|
|
void
|
|
acb_mat_approx_solve_triu_classical(acb_mat_t X, const acb_mat_t U,
|
|
const acb_mat_t B, int unit, slong prec)
|
|
{
|
|
slong i, j, n, m;
|
|
acb_ptr tmp;
|
|
acb_t s, t;
|
|
|
|
n = U->r;
|
|
m = B->c;
|
|
|
|
acb_init(s);
|
|
acb_init(t);
|
|
tmp = flint_malloc(sizeof(acb_struct) * n);
|
|
|
|
for (i = 0; i < m; i++)
|
|
{
|
|
for (j = 0; j < n; j++)
|
|
tmp[j] = *acb_mat_entry(X, j, i);
|
|
|
|
for (j = n - 1; j >= 0; j--)
|
|
{
|
|
acb_approx_dot(s, acb_mat_entry(B, j, i), 1, U->rows[j] + j + 1, 1, tmp + j + 1, 1, n - j - 1, prec);
|
|
|
|
if (!unit)
|
|
acb_approx_div(tmp + j, s, arb_mat_entry(U, j, j), t, prec);
|
|
else
|
|
acb_swap(tmp + j, s);
|
|
}
|
|
|
|
for (j = 0; j < n; j++)
|
|
*acb_mat_entry(X, j, i) = tmp[j];
|
|
}
|
|
|
|
flint_free(tmp);
|
|
acb_clear(s);
|
|
acb_clear(t);
|
|
}
|
|
|
|
void
|
|
acb_mat_approx_solve_triu_recursive(acb_mat_t X,
|
|
const acb_mat_t U, const acb_mat_t B, int unit, slong prec)
|
|
{
|
|
acb_mat_t UA, UB, UD, XX, XY, BX, BY, T;
|
|
slong r, n, m;
|
|
|
|
n = U->r;
|
|
m = B->c;
|
|
r = n / 2;
|
|
|
|
if (n == 0 || m == 0)
|
|
return;
|
|
|
|
/*
|
|
Denoting inv(M) by M^, we have:
|
|
[A B]^ [X] == [A^ (X - B D^ Y)]
|
|
[0 D] [Y] == [ D^ Y ]
|
|
*/
|
|
|
|
acb_mat_window_init(UA, U, 0, 0, r, r);
|
|
acb_mat_window_init(UB, U, 0, r, r, n);
|
|
acb_mat_window_init(UD, U, r, r, n, n);
|
|
acb_mat_window_init(BX, B, 0, 0, r, m);
|
|
acb_mat_window_init(BY, B, r, 0, n, m);
|
|
acb_mat_window_init(XX, X, 0, 0, r, m);
|
|
acb_mat_window_init(XY, X, r, 0, n, m);
|
|
|
|
acb_mat_approx_solve_triu(XY, UD, BY, unit, prec);
|
|
|
|
acb_mat_init(T, UB->r, XY->c);
|
|
acb_mat_approx_mul(T, UB, XY, prec);
|
|
acb_mat_sub(XX, BX, T, prec);
|
|
acb_mat_get_mid(XX, XX);
|
|
acb_mat_clear(T);
|
|
|
|
acb_mat_approx_solve_triu(XX, UA, XX, unit, prec);
|
|
|
|
acb_mat_window_clear(UA);
|
|
acb_mat_window_clear(UB);
|
|
acb_mat_window_clear(UD);
|
|
acb_mat_window_clear(BX);
|
|
acb_mat_window_clear(BY);
|
|
acb_mat_window_clear(XX);
|
|
acb_mat_window_clear(XY);
|
|
}
|
|
|
|
void
|
|
acb_mat_approx_solve_triu(acb_mat_t X, const acb_mat_t U,
|
|
const acb_mat_t B, int unit, slong prec)
|
|
{
|
|
if (B->r < 40 || B->c < 40)
|
|
acb_mat_approx_solve_triu_classical(X, U, B, unit, prec);
|
|
else
|
|
acb_mat_approx_solve_triu_recursive(X, U, B, unit, prec);
|
|
}
|