arb/acb_modular/test/t-lambda.c

132 lines
4 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2014 Fredrik Johansson
******************************************************************************/
#include "acb_modular.h"
int main()
{
slong iter;
flint_rand_t state;
printf("lambda....");
fflush(stdout);
flint_randinit(state);
for (iter = 0; iter < 10000; iter++)
{
acb_t tau1, tau2, z1, z2, z3, t;
slong e0, prec0, prec1, prec2, step;
acb_init(tau1);
acb_init(tau2);
acb_init(z1);
acb_init(z2);
acb_init(z3);
acb_init(t);
e0 = 1 + n_randint(state, 100);
prec0 = 2 + n_randint(state, 1000);
prec1 = 2 + n_randint(state, 1000);
prec2 = 2 + n_randint(state, 1000);
acb_randtest(tau1, state, prec0, e0);
acb_randtest(tau2, state, prec0, e0);
acb_randtest(z1, state, prec0, e0);
acb_randtest(z2, state, prec0, e0);
acb_set(tau2, tau1);
step = n_randint(state, 10);
/* Test invariance */
while (step --> 0)
{
if (n_randint(state, 2))
{
acb_add_ui(tau2, tau2, 2, prec0);
}
else
{
acb_mul_si(z1, tau2, -2, prec0);
acb_add_ui(z1, z1, 1, prec0);
acb_div(tau2, tau2, z1, prec0);
}
}
acb_modular_lambda(z1, tau1, prec1);
acb_modular_lambda(z2, tau2, prec2);
/* Compare with eta */
acb_mul_2exp_si(tau1, tau1, -1);
acb_modular_eta(z3, tau1, prec2);
acb_mul_2exp_si(tau1, tau1, 2);
acb_modular_eta(t, tau1, prec2);
acb_mul(t, t, t, prec2);
acb_mul(z3, z3, t, prec2);
acb_mul_2exp_si(tau1, tau1, -1);
acb_modular_eta(t, tau1, prec2);
acb_pow_ui(t, t, 3, prec2);
acb_div(z3, z3, t, prec2);
acb_pow_ui(z3, z3, 8, prec2);
acb_mul_2exp_si(z3, z3, 4);
if (!acb_overlaps(z1, z2) || !acb_overlaps(z1, z3))
{
printf("FAIL (overlap)\n");
printf("tau1 = "); acb_printd(tau1, 15); printf("\n\n");
printf("tau2 = "); acb_printd(tau2, 15); printf("\n\n");
printf("z1 = "); acb_printd(z1, 15); printf("\n\n");
printf("z2 = "); acb_printd(z2, 15); printf("\n\n");
printf("z3 = "); acb_printd(z3, 15); printf("\n\n");
abort();
}
acb_modular_lambda(tau1, tau1, prec2);
if (!acb_overlaps(z1, tau1))
{
printf("FAIL (aliasing)\n");
printf("tau1 = "); acb_printd(tau1, 15); printf("\n\n");
printf("tau2 = "); acb_printd(tau2, 15); printf("\n\n");
printf("z1 = "); acb_printd(z1, 15); printf("\n\n");
printf("z2 = "); acb_printd(z2, 15); printf("\n\n");
abort();
}
acb_clear(tau1);
acb_clear(tau2);
acb_clear(z1);
acb_clear(z2);
acb_clear(z3);
acb_clear(t);
}
flint_randclear(state);
flint_cleanup();
printf("PASS\n");
return EXIT_SUCCESS;
}