mirror of
https://github.com/vale981/arb
synced 2025-03-05 17:31:38 -05:00
205 lines
5.3 KiB
C
205 lines
5.3 KiB
C
/*
|
|
Copyright (C) 2014 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_poly.h"
|
|
|
|
void
|
|
_acb_poly_zeta_cpx_series(acb_ptr z, const acb_t s, const acb_t a, int deflate, slong d, slong prec)
|
|
{
|
|
ulong M, N;
|
|
slong i, bound_prec;
|
|
mag_t bound;
|
|
arb_ptr vb;
|
|
int is_real, const_is_real;
|
|
|
|
if (d < 1)
|
|
return;
|
|
|
|
if (!acb_is_finite(s) || !acb_is_finite(a))
|
|
{
|
|
_acb_vec_indeterminate(z, d);
|
|
return;
|
|
}
|
|
|
|
if (acb_is_one(s) && deflate && d == 1)
|
|
{
|
|
acb_digamma(z, a, prec);
|
|
acb_neg(z, z);
|
|
if (!acb_is_finite(z)) /* todo: in digamma */
|
|
acb_indeterminate(z);
|
|
return;
|
|
}
|
|
|
|
is_real = const_is_real = 0;
|
|
|
|
if (acb_is_real(s) && acb_is_real(a))
|
|
{
|
|
if (arb_is_positive(acb_realref(a)))
|
|
{
|
|
is_real = const_is_real = 1;
|
|
}
|
|
else if (arb_is_int(acb_realref(a)) &&
|
|
arb_is_int(acb_realref(s)) &&
|
|
arb_is_nonpositive(acb_realref(s)))
|
|
{
|
|
const_is_real = 1;
|
|
}
|
|
}
|
|
|
|
mag_init(bound);
|
|
vb = _arb_vec_init(d);
|
|
|
|
bound_prec = 40 + prec / 20;
|
|
|
|
_acb_poly_zeta_em_choose_param(bound, &N, &M, s, a, FLINT_MIN(d, 2), prec, bound_prec);
|
|
_acb_poly_zeta_em_bound(vb, s, a, N, M, d, bound_prec);
|
|
|
|
_acb_poly_zeta_em_sum(z, s, a, deflate, N, M, d, prec);
|
|
|
|
for (i = 0; i < d; i++)
|
|
{
|
|
arb_get_mag(bound, vb + i);
|
|
arb_add_error_mag(acb_realref(z + i), bound);
|
|
|
|
if (!is_real && !(i == 0 && const_is_real))
|
|
arb_add_error_mag(acb_imagref(z + i), bound);
|
|
}
|
|
|
|
mag_clear(bound);
|
|
_arb_vec_clear(vb, d);
|
|
}
|
|
|
|
void
|
|
_acb_poly_zeta_cpx_reflect(acb_ptr t, const acb_t h, const acb_t a, int deflate, slong len, slong prec)
|
|
{
|
|
/* use reflection formula */
|
|
if (arf_sgn(arb_midref(acb_realref(h))) < 0 && acb_is_one(a))
|
|
{
|
|
/* zeta(s) = (2*pi)**s * sin(pi*s/2) / pi * gamma(1-s) * zeta(1-s) */
|
|
acb_t pi, hcopy;
|
|
acb_ptr f, s1, s2, s3, s4, u;
|
|
slong i;
|
|
|
|
acb_init(pi);
|
|
acb_init(hcopy);
|
|
f = _acb_vec_init(2);
|
|
s1 = _acb_vec_init(len);
|
|
s2 = _acb_vec_init(len);
|
|
s3 = _acb_vec_init(len);
|
|
s4 = _acb_vec_init(len);
|
|
u = _acb_vec_init(len);
|
|
acb_set(hcopy, h);
|
|
|
|
acb_const_pi(pi, prec);
|
|
|
|
/* s1 = (2*pi)**s */
|
|
acb_mul_2exp_si(pi, pi, 1);
|
|
_acb_poly_pow_cpx(s1, pi, h, len, prec);
|
|
acb_mul_2exp_si(pi, pi, -1);
|
|
|
|
/* s2 = sin(pi*s/2) / pi */
|
|
acb_set(f, h);
|
|
acb_one(f + 1);
|
|
acb_mul_2exp_si(f, f, -1);
|
|
acb_mul_2exp_si(f + 1, f + 1, -1);
|
|
_acb_poly_sin_pi_series(s2, f, 2, len, prec);
|
|
_acb_vec_scalar_div(s2, s2, len, pi, prec);
|
|
|
|
/* s3 = gamma(1-s) */
|
|
acb_sub_ui(f, hcopy, 1, prec);
|
|
acb_neg(f, f);
|
|
acb_set_si(f + 1, -1);
|
|
_acb_poly_gamma_series(s3, f, 2, len, prec);
|
|
|
|
/* s4 = zeta(1-s) */
|
|
acb_sub_ui(f, hcopy, 1, prec);
|
|
acb_neg(f, f);
|
|
_acb_poly_zeta_cpx_series(s4, f, a, 0, len, prec);
|
|
for (i = 1; i < len; i += 2)
|
|
acb_neg(s4 + i, s4 + i);
|
|
|
|
_acb_poly_mullow(u, s1, len, s2, len, len, prec);
|
|
_acb_poly_mullow(s1, s3, len, s4, len, len, prec);
|
|
_acb_poly_mullow(t, u, len, s1, len, len, prec);
|
|
|
|
/* add 1/(1-(s+t)) = 1/(1-s) + t/(1-s)^2 + ... */
|
|
if (deflate)
|
|
{
|
|
acb_sub_ui(u, hcopy, 1, prec);
|
|
acb_neg(u, u);
|
|
acb_inv(u, u, prec);
|
|
for (i = 1; i < len; i++)
|
|
acb_mul(u + i, u + i - 1, u, prec);
|
|
_acb_vec_add(t, t, u, len, prec);
|
|
}
|
|
|
|
acb_clear(pi);
|
|
acb_clear(hcopy);
|
|
_acb_vec_clear(f, 2);
|
|
_acb_vec_clear(s1, len);
|
|
_acb_vec_clear(s2, len);
|
|
_acb_vec_clear(s3, len);
|
|
_acb_vec_clear(s4, len);
|
|
_acb_vec_clear(u, len);
|
|
}
|
|
else
|
|
{
|
|
_acb_poly_zeta_cpx_series(t, h, a, deflate, len, prec);
|
|
}
|
|
}
|
|
|
|
void
|
|
_acb_poly_zeta_series(acb_ptr res, acb_srcptr h, slong hlen, const acb_t a, int deflate, slong len, slong prec)
|
|
{
|
|
acb_ptr t, u;
|
|
hlen = FLINT_MIN(hlen, len);
|
|
|
|
t = _acb_vec_init(len);
|
|
u = _acb_vec_init(len);
|
|
|
|
_acb_poly_zeta_cpx_reflect(t, h, a, deflate, len, prec);
|
|
|
|
/* compose with nonconstant part */
|
|
acb_zero(u);
|
|
_acb_vec_set(u + 1, h + 1, hlen - 1);
|
|
_acb_poly_compose_series(res, t, len, u, hlen, len, prec);
|
|
|
|
_acb_vec_clear(t, len);
|
|
_acb_vec_clear(u, len);
|
|
}
|
|
|
|
void
|
|
acb_poly_zeta_series(acb_poly_t res, const acb_poly_t f, const acb_t a, int deflate, slong n, slong prec)
|
|
{
|
|
if (n == 0)
|
|
{
|
|
acb_poly_zero(res);
|
|
return;
|
|
}
|
|
|
|
acb_poly_fit_length(res, n);
|
|
|
|
if (f->length == 0)
|
|
{
|
|
acb_t t;
|
|
acb_init(t);
|
|
_acb_poly_zeta_series(res->coeffs, t, 1, a, deflate, n, prec);
|
|
acb_clear(t);
|
|
}
|
|
else
|
|
{
|
|
_acb_poly_zeta_series(res->coeffs, f->coeffs, f->length, a, deflate, n, prec);
|
|
}
|
|
|
|
_acb_poly_set_length(res, n);
|
|
_acb_poly_normalise(res);
|
|
}
|
|
|