No description
Find a file
2016-04-20 17:43:59 -04:00
acb use arb_test_multiplier to control number of test iterations 2016-04-10 17:24:58 +02:00
acb_calc use arb_test_multiplier to control number of test iterations 2016-04-10 17:24:58 +02:00
acb_dirichlet use arb_test_multiplier to control number of test iterations 2016-04-10 17:24:58 +02:00
acb_hypgeom ENH: regularization of upper incomplete gamma series 2016-04-20 17:43:59 -04:00
acb_mat use arb_test_multiplier to control number of test iterations 2016-04-10 17:24:58 +02:00
acb_modular use arb_test_multiplier to control number of test iterations 2016-04-10 17:24:58 +02:00
acb_poly MAINT: move upper incomplete gamma series from acb_poly to acb_hypgeom 2016-04-19 15:27:53 -04:00
arb make test code for arb_sinc less likely to produce spurious failures 2016-04-10 23:55:04 +02:00
arb_calc use arb_test_multiplier to control number of test iterations 2016-04-10 17:24:58 +02:00
arb_mat use arb_test_multiplier to control number of test iterations 2016-04-10 17:24:58 +02:00
arb_poly remove unused internal function 2016-04-11 13:59:35 +02:00
arf remove unused code chunk 2016-04-15 16:20:01 +02:00
bernoulli use arb_test_multiplier to control number of test iterations 2016-04-10 17:24:58 +02:00
bool_mat use arb_test_multiplier to control number of test iterations 2016-04-10 17:24:58 +02:00
doc ENH: regularization of upper incomplete gamma series 2016-04-20 17:43:59 -04:00
examples add fresnel integrals to complex_plot.c 2016-03-16 21:12:46 +01:00
fmpr use arb_test_multiplier to control number of test iterations 2016-04-10 17:24:58 +02:00
fmpz_extras use arb_test_multiplier to control number of test iterations 2016-04-10 17:24:58 +02:00
hypgeom include flint/foo.h instead of foo.h 2016-03-03 15:42:23 +01:00
mag add aliasing tests for some mag functions 2016-04-10 23:53:59 +02:00
partitions speed up partition function for n < 1000 2016-03-06 16:15:21 +01:00
.build_dependencies .build_dependencies: fix a wget, and don't build static libraries 2016-04-19 01:03:55 +02:00
.travis.yml travis: arb_test_multiplier=0.1 for osx 2016-04-11 11:40:02 +05:30
acb.h add acb_csgn (alternative definition of sign function) 2016-02-18 01:37:51 +01:00
acb_calc.h long -> slong acb_calc.h. 2015-11-06 11:12:00 +00:00
acb_dirichlet.h tidying 2016-02-22 11:47:12 +01:00
acb_hypgeom.h ENH: regularization of upper incomplete gamma series 2016-04-20 17:43:59 -04:00
acb_mat.h ENH: compute frobenius norm interval 2016-04-06 12:25:57 -04:00
acb_modular.h include flint/foo.h instead of foo.h 2016-03-03 15:42:23 +01:00
acb_poly.h MAINT: move upper incomplete gamma series from acb_poly to acb_hypgeom 2016-04-19 15:27:53 -04:00
arb.h fix compiler warnings 2016-04-18 20:13:57 +02:00
arb_calc.h MAINT: print(...) is now implemented like fprint(stdout, ...) 2016-01-01 17:18:55 -05:00
arb_mat.h ENH: compute frobenius norm interval 2016-04-06 12:25:57 -04:00
arb_poly.h add comment for helper function 2016-03-15 14:31:17 +01:00
arf.h include flint/foo.h instead of foo.h 2016-03-03 15:42:23 +01:00
bernoulli.h include flint/foo.h instead of foo.h 2016-03-03 15:42:23 +01:00
bool_mat.h fix compiler warnings 2016-04-18 20:13:57 +02:00
configure include flint/foo.h instead of foo.h 2016-03-03 15:42:23 +01:00
fmpr.h fix compiler warnings 2016-04-18 20:13:57 +02:00
fmpz_extras.h fix compiler warnings 2016-04-18 20:13:57 +02:00
gpl-2.0.txt first commit 2012-04-05 15:57:19 +02:00
hypgeom.h include flint/foo.h instead of foo.h 2016-03-03 15:42:23 +01:00
mag.h fix a very rare but serious bug: mag_addmul(x,x,x) with x = 0.1111...1111 -> non-normalized mag_t value 2016-04-10 23:54:20 +02:00
Makefile.in MAINT: remove fmpz_mat_extras 2016-03-04 00:54:40 -05:00
Makefile.subdirs replace makefiles with version based on the improved flint makefiles 2014-08-18 22:53:50 +02:00
partitions.h fast approximate partition function (arb_partitions_fmpz/ui) 2016-03-06 04:50:22 +01:00
README.md travis icon 2016-04-11 14:31:14 +02:00

Arb

Arb is a C library for arbitrary-precision interval arithmetic. It has full support for both real and complex numbers. The library is thread-safe, portable, and extensively tested.

arb logo

Documentation: http://fredrikj.net/arb/

Development updates: http://fredrikj.net/blog/

Author: Fredrik Johansson fredrik.johansson@gmail.com

Bug reports, feature requests and other comments are welcome in private communication, on the GitHub issue tracker, or on the FLINT mailing list flint-devel@googlegroups.com.

Build Status

Code example

The following program evaluates sin(pi + exp(-10000)). Since the input to the sine function matches a root to within 4343 digits, at least 4343-digit (14427-bit) precision is needed to get an accurate result. The program repeats the evaluation at 64-bit, 128-bit, ... precision, stopping only when the result is accurate to at least 53 bits.

#include "arb.h"

int main()
{
    slong prec;
    arb_t x, y;
    arb_init(x); arb_init(y);

    for (prec = 64; ; prec *= 2)
    {
        arb_const_pi(x, prec);
        arb_set_si(y, -10000);
        arb_exp(y, y, prec);
        arb_add(x, x, y, prec);
        arb_sin(y, x, prec);
        arb_printn(y, 15, 0); printf("\n");
        if (arb_rel_accuracy_bits(y) >= 53)
            break;
    }

    arb_clear(x); arb_clear(y);
    flint_cleanup();
}

The output is:

[+/- 6.01e-19]
[+/- 2.55e-38]
[+/- 8.01e-77]
[+/- 8.64e-154]
[+/- 5.37e-308]
[+/- 3.63e-616]
[+/- 1.07e-1232]
[+/- 9.27e-2466]
[-1.13548386531474e-4343 +/- 3.91e-4358]

Each line shows a rigorous enclosure of the exact value of the expression. The program demonstrates how the user can rely on Arb's automatic error bound tracking to get an output that is guaranteed to be accurate -- no error analysis needs to be done by the user.

For several other example programs, see: http://fredrikj.net/arb/examples.html

General features

Besides basic arithmetic, Arb allows working with univariate polynomials, truncated power series, and matrices over both real and complex numbers.

Basic linear algebra is supported, including matrix multiplication, determinant, inverse, nonsingular solving and matrix exponential.

Support for polynomial and power series is quite extensive, including methods for composition, reversion, product trees, multipoint evaluation and interpolation, complex root isolation, and transcendental functions of power series.

Arb has partial support for automatic differentiation (AD), and includes rudimentary functionality for rigorous calculus based on AD (including real root isolation and complex integration).

Special functions

Arb can compute a wide range of transcendental and special functions, including the gamma function, polygamma functions, Riemann zeta and Hurwitz zeta function, polylogarithm, error function, Gauss hypergeometric function 2F1, confluent hypergeometric functions, Bessel functions, Airy functions, Legendre functions and other orthogonal polynomials, exponential and trigonometric integrals, incomplete gamma function, Jacobi theta functions, modular functions, Weierstrass elliptic function, complete elliptic integrals, arithmetic-geometric mean, Bernoulli numbers, partition function, Barnes G-function.

Speed

Arb uses a midpoint-radius (ball) representation of real numbers. At high precision, this allows doing interval arithmetic without significant overhead compared to plain floating-point arithmetic. Various low-level optimizations have also been implemented to reduce overhead at precisions of just a few machine words. Most operations on polynomials and power series use asymptotically fast FFT multiplication.

For basic arithmetic, Arb should generally be around as fast as MPFR (http://mpfr.org), though it can be a bit slower at low precision, and around twice as fast as MPFI (https://perso.ens-lyon.fr/nathalie.revol/software.html).

Transcendental functions in Arb are quite well optimized and should generally be faster than any other arbitrary-precision software currently available. The following table compares the time in seconds to evaluate the Gauss hypergeometric function 2F1(1/2, 1/4, 1, z) at the complex number z = 5^(1/2) + 7^(1/2)i, to a given number of decimal digits (Arb 2.8-git and mpmath 0.19 on an 1.90 GHz Intel i5-4300U, Mathematica 9.0 on a 3.07 GHz Intel Xeon X5675).

Digits Mathematica mpmath Arb
10 0.00066 0.00065 0.000071
100 0.0039 0.0012 0.00048
1000 0.23 1.2 0.0093
10000 42.6 84 0.56

Dependencies, installation, and interfaces

Arb depends on FLINT (http://flintlib.org/), either GMP (http://gmplib.org) or MPIR (http://mpir.org), and MPFR (http://mpfr.org).

See http://fredrikj.net/arb/setup.html for instructions on building and installing Arb directly from the source code. Arb might also be available (or coming soon) as a package for your Linux distribution.

SageMath (http://sagemath.org/) includes Arb as a standard package and contains a high-level Python interface. See the SageMath documentation for RealBallField (http://doc.sagemath.org/html/en/reference/rings_numerical/sage/rings/real_arb.html) and ComplexBallField (http://doc.sagemath.org/html/en/reference/rings_numerical/sage/rings/complex_arb.html).

Nemo (http://nemocas.org/) is a computer algebra package for the Julia programming language which includes a high-level Julia interface to Arb. The Nemo installation script will create a local installation of Arb along with other dependencies.

An experimental standalone Python interface to FLINT and Arb is also available (https://github.com/fredrik-johansson/python-flint).

A separate wrapper of transcendental functions for use with the C99 complex double type is available (https://github.com/fredrik-johansson/arbcmath).