arb/acb/rsqrt.c
2018-04-10 17:49:06 +02:00

484 lines
12 KiB
C

/*
Copyright (C) 2013, 2018 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb.h"
/* r - |m| */
void
arb_get_mag_reverse(mag_t res, const arb_t x)
{
mag_t t;
mag_init(t);
arf_get_mag_lower(t, arb_midref(x));
mag_sub(res, arb_radref(x), t);
mag_clear(t);
}
/* upper bound for re(rsqrt(x+yi)) / |rsqrt(x+yi)|,
given upper bound for x, lower bound for y */
void
mag_rsqrt_re_quadrant1_upper(mag_t res, const mag_t x, const mag_t y)
{
if (mag_is_zero(x))
{
mag_one(res);
mag_mul_2exp_si(res, res, -1);
}
else
{
mag_t t, u;
mag_init(t);
mag_init(u);
/* t = (y/x)^2 -- the result is a decreasing function of t */
mag_div_lower(t, y, x);
mag_mul_lower(t, t, t);
/* (rsqrt(t^2+1)+1)/2 */
mag_add_ui_lower(u, t, 1);
mag_rsqrt(u, u);
mag_add_ui(u, u, 1);
mag_mul_2exp_si(res, u, -1);
mag_clear(t);
mag_clear(u);
}
mag_sqrt(res, res);
}
/* lower bound for re(rsqrt(x+yi)) / |rsqrt(x+yi)|,
given lower bound for x, upper bound for y */
void
mag_rsqrt_re_quadrant1_lower(mag_t res, const mag_t x, const mag_t y)
{
if (mag_is_zero(x))
{
mag_one(res);
mag_mul_2exp_si(res, res, -1);
}
else
{
mag_t t, u;
mag_init(t);
mag_init(u);
/* t = (y/x)^2 -- the result is a decreasing function of t */
mag_div(t, y, x);
mag_mul(t, t, t);
/* (rsqrt(t^2+1)+1)/2 */
mag_add_ui(u, t, 1);
mag_rsqrt_lower(u, u);
mag_add_ui_lower(u, u, 1);
mag_mul_2exp_si(res, u, -1);
mag_clear(t);
mag_clear(u);
}
mag_sqrt_lower(res, res);
}
/* upper bound for re(rsqrt(-x+yi)) / |rsqrt(x+yi)|,
given lower bound for -x, upper bound for y */
void
mag_rsqrt_re_quadrant2_upper(mag_t res, const mag_t x, const mag_t y)
{
if (mag_is_zero(x))
{
mag_one(res);
mag_mul_2exp_si(res, res, -1);
}
else
{
mag_t t, u, v;
mag_init(t);
mag_init(u);
mag_init(v);
/* t = (y/x)^2 -- the result is an increasing function of t */
mag_div(t, y, x);
mag_mul(t, t, t);
/* t / (2*(t+1)*(rsqrt(t+1)+1)) */
mag_add_ui(u, t, 1);
mag_rsqrt_lower(v, u);
mag_add_ui_lower(v, v, 1);
mag_add_ui_lower(u, t, 1);
mag_mul_lower(v, v, u);
mag_mul_2exp_si(v, v, 1);
mag_div(res, t, v);
mag_clear(t);
mag_clear(u);
mag_clear(v);
}
mag_sqrt(res, res);
}
/* lower bound for re(rsqrt(-x+yi)) / |rsqrt(x+yi)|,
given upper bound for -x, lower bound for y */
void
mag_rsqrt_re_quadrant2_lower(mag_t res, const mag_t x, const mag_t y)
{
if (mag_is_zero(x))
{
mag_one(res);
mag_mul_2exp_si(res, res, -1);
}
else
{
mag_t t, u, v;
mag_init(t);
mag_init(u);
mag_init(v);
/* t = (y/x)^2 -- the result is an increasing function of t */
mag_div_lower(t, y, x);
mag_mul_lower(t, t, t);
/* t / (2*(t+1)*(rsqrt(t+1)+1)) */
mag_add_ui_lower(u, t, 1);
mag_rsqrt(v, u);
mag_add_ui(v, v, 1);
mag_add_ui(u, t, 1);
mag_mul(v, v, u);
mag_mul_2exp_si(v, v, 1);
mag_div_lower(res, t, v);
mag_clear(t);
mag_clear(u);
mag_clear(v);
}
mag_sqrt_lower(res, res);
}
void
acb_rsqrt_wide(acb_t res, const acb_t z, slong prec)
{
mag_t ax, ay, bx, by, cx, cy, dx, dy, am, bm;
mag_t one;
mag_init(ax); mag_init(ay); mag_init(bx); mag_init(by);
mag_init(cx); mag_init(cy); mag_init(dx); mag_init(dy);
mag_init(am); mag_init(bm);
mag_init(one);
mag_one(one);
/* magnitude */
acb_get_mag(am, z);
mag_rsqrt_lower(am, am);
acb_get_mag_lower(bm, z);
mag_rsqrt(bm, bm);
/* upper or lower half plane */
if (arb_is_nonnegative(acb_imagref(z)) || arb_is_negative(acb_imagref(z)))
{
if (arb_is_nonnegative(acb_realref(z)))
{
arb_get_mag_lower(ax, acb_realref(z));
arb_get_mag(ay, acb_imagref(z));
arb_get_mag(bx, acb_realref(z));
arb_get_mag_lower(by, acb_imagref(z));
mag_rsqrt_re_quadrant2_lower(cx, bx, by);
mag_rsqrt_re_quadrant2_upper(dx, ax, ay);
/* equivalent but more expensive than pythagoras
mag_rsqrt_re_quadrant1_lower(ax, ax, ay);
mag_rsqrt_re_quadrant1_upper(bx, bx, by);
*/
mag_mul(ax, dx, dx);
mag_sub_lower(ax, one, ax);
mag_sqrt_lower(ax, ax);
mag_mul_lower(bx, cx, cx);
mag_sub(bx, one, bx);
mag_sqrt(bx, bx);
}
else
{
if (arb_is_nonpositive(acb_realref(z)))
{
arb_get_mag(ax, acb_realref(z));
arb_get_mag_lower(ay, acb_imagref(z));
arb_get_mag_lower(bx, acb_realref(z));
arb_get_mag(by, acb_imagref(z));
/* equivalent but more expensive than pythagoras
mag_rsqrt_re_quadrant1_lower(cx, bx, by);
mag_rsqrt_re_quadrant1_upper(dx, ax, ay);
*/
mag_rsqrt_re_quadrant2_lower(ax, ax, ay);
mag_rsqrt_re_quadrant2_upper(bx, bx, by);
}
else if (arf_sgn(arb_midref(acb_realref(z))) >= 0)
{
arb_get_mag_reverse(ax, acb_realref(z));
arb_get_mag_lower(ay, acb_imagref(z));
arb_get_mag(bx, acb_realref(z));
arb_get_mag_lower(by, acb_imagref(z));
mag_rsqrt_re_quadrant2_lower(ax, ax, ay);
mag_rsqrt_re_quadrant1_upper(bx, bx, by);
}
else
{
arb_get_mag(ax, acb_realref(z));
arb_get_mag_lower(ay, acb_imagref(z));
arb_get_mag_reverse(bx, acb_realref(z));
arb_get_mag_lower(by, acb_imagref(z));
mag_rsqrt_re_quadrant2_lower(ax, ax, ay);
mag_rsqrt_re_quadrant1_upper(bx, bx, by);
}
/* pythagoras */
mag_mul(cx, bx, bx);
mag_sub_lower(cx, one, bx);
mag_sqrt_lower(cx, cx);
mag_mul_lower(dx, ax, ax);
mag_sub(dx, one, dx);
mag_sqrt(dx, dx);
}
mag_mul_lower(ax, ax, am);
mag_mul_lower(cx, cx, am);
mag_mul(bx, bx, bm);
mag_mul(dx, dx, bm);
if (arf_sgn(arb_midref(acb_imagref(z))) > 0)
{
arb_set_interval_mag(acb_realref(res), ax, bx, prec);
arb_set_interval_mag(acb_imagref(res), cx, dx, prec);
arf_neg(arb_midref(acb_imagref(res)), arb_midref(acb_imagref(res)));
}
else
{
arb_set_interval_mag(acb_realref(res), ax, bx, prec);
arb_set_interval_mag(acb_imagref(res), cx, dx, prec);
}
}
else if (arb_is_positive(acb_realref(z)))
{
/* right half plane, straddling real line */
int symmetric;
symmetric = arf_is_zero(arb_midref(acb_imagref(z)));
arb_get_mag_lower(ax, acb_realref(z));
arb_get_mag(dy, acb_imagref(z));
arb_get_mag_reverse(cy, acb_imagref(z));
if (!symmetric)
mag_rsqrt_re_quadrant2_lower(cx, ax, cy);
mag_rsqrt_re_quadrant2_upper(dx, ax, dy);
mag_one(bx);
/* mag_rsqrt_re_quadrant1_lower(ax, ax, dy); */
mag_mul(ax, dx, dx);
mag_sub_lower(ax, one, ax);
mag_sqrt_lower(ax, ax);
mag_mul_lower(ax, ax, am);
mag_mul(bx, bx, bm);
mag_mul(cx, cx, bm);
mag_mul(dx, dx, bm);
if (symmetric)
arb_set_interval_neg_pos_mag(acb_imagref(res), dx, dx, prec);
else if (arf_sgn(arb_midref(acb_imagref(z))) > 0)
arb_set_interval_neg_pos_mag(acb_imagref(res), dx, cx, prec);
else
arb_set_interval_neg_pos_mag(acb_imagref(res), cx, dx, prec);
arb_set_interval_mag(acb_realref(res), ax, bx, prec);
}
else /* left half plane, straddling branch cut */
{
mag_zero(ax);
arb_get_mag_lower(bx, acb_realref(z));
arb_get_mag(by, acb_imagref(z));
mag_rsqrt_re_quadrant2_upper(bx, bx, by);
mag_mul_lower(ax, ax, am);
mag_mul(bx, bx, bm);
arb_set_interval_mag(acb_realref(res), ax, bx, prec);
/* cx, dx = 1,1 */
arb_set_interval_neg_pos_mag(acb_imagref(res), bm, bm, prec);
}
mag_clear(ax); mag_clear(ay); mag_clear(bx); mag_clear(by);
mag_clear(cx); mag_clear(cy); mag_clear(dx); mag_clear(dy);
mag_clear(am); mag_clear(bm);
mag_clear(one);
}
void
acb_rsqrt_precise(acb_t y, const acb_t x, slong prec)
{
#define a acb_realref(x)
#define b acb_imagref(x)
#define c acb_realref(y)
#define d acb_imagref(y)
arb_t r, t, u, v;
slong wp;
/* based on the identity sqrt(z) = sqrt(r) (z+r) / |z+r|: */
/* 1/sqrt(a+bi) = (1/v)((a+r) - b*i), r = |a+bi|, v = sqrt(r*(b^2+(a+r)^2)) */
wp = prec + 6;
arb_init(r);
arb_init(t);
arb_init(u);
arb_init(v);
/* u = b^2, r = |a+bi| */
arb_mul(t, a, a, wp);
arb_mul(u, b, b, wp);
arb_add(r, t, u, wp);
arb_sqrtpos(r, r, wp);
/* t = a+r, v = r*(b^2+(a+r)^2) */
arb_add(t, r, a, wp);
arb_mul(v, t, t, wp);
arb_add(v, v, u, wp);
arb_mul(v, v, r, wp);
/* v = 1/sqrt(v) */
arb_rsqrt(v, v, wp);
arb_mul(c, t, v, prec);
arb_mul(d, b, v, prec);
arb_neg(d, d);
arb_clear(r);
arb_clear(t);
arb_clear(u);
arb_clear(v);
#undef a
#undef b
#undef c
#undef d
}
void
acb_rsqrt(acb_t y, const acb_t x, slong prec)
{
slong acc;
#define a acb_realref(x)
#define b acb_imagref(x)
#define c acb_realref(y)
#define d acb_imagref(y)
if (acb_contains_zero(x))
{
acb_indeterminate(y);
return;
}
if (arb_is_zero(b))
{
if (arb_is_nonnegative(a))
{
arb_rsqrt(c, a, prec);
arb_zero(d);
return;
}
else if (arb_is_nonpositive(a))
{
arb_neg(d, a);
arb_rsqrt(d, d, prec);
arb_neg(d, d);
arb_zero(c);
return;
}
}
if (arb_is_zero(a))
{
if (arb_is_nonnegative(b))
{
arb_mul_2exp_si(c, b, 1);
arb_rsqrt(c, c, prec);
arb_neg(d, c);
return;
}
else if (arb_is_nonpositive(b))
{
arb_mul_2exp_si(c, b, 1);
arb_neg(c, c);
arb_rsqrt(c, c, prec);
arb_set(d, c);
return;
}
}
acc = acb_rel_accuracy_bits(x);
if (acc < 25)
{
acb_rsqrt_wide(y, x, prec);
}
else
{
if (arb_is_positive(a))
{
acb_rsqrt_precise(y, x, prec);
}
else if (arb_is_nonnegative(b))
{
acb_neg(y, x);
acb_rsqrt_precise(y, y, prec);
acb_div_onei(y, y);
}
else if (arb_is_negative(b))
{
acb_neg(y, x);
acb_rsqrt_precise(y, y, prec);
acb_mul_onei(y, y);
}
else
{
acb_rsqrt_wide(y, x, prec);
}
}
#undef a
#undef b
#undef c
#undef d
}
void
acb_rsqrt_analytic(acb_ptr res, const acb_t z, int analytic, slong prec)
{
if (analytic && arb_contains_zero(acb_imagref(z)) &&
!arb_is_positive(acb_realref(z)))
{
acb_indeterminate(res);
}
else
{
acb_rsqrt(res, z, prec);
}
}