arb/fmprb/zeta_ui_euler_product.c
Fredrik Johansson 942fd30c90 further cleanup
2012-09-20 15:51:49 +02:00

113 lines
3 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012 Fredrik Johansson
******************************************************************************/
#include <math.h>
#include "fmprb.h"
/*
Let P(a,b) = prod_{a <= p <= b} (1 - p^(-s)).
Then 1/zeta(s) = P(a,M) * P(M+1,inf).
According to the analysis in S. Fillebrown,
"Faster Computation of Bernoulli Numbers", Journal of Algorithms 13,
431-445 (1992), it holds for all s >= 6 and M >= 1 that
(1/P(M+1,inf) - 1) <= 2 * M^(1-s) / (s/2 - 1).
Writing 1/zeta(s) = P(a,M) * (1 - eps) and solving for eps gives
1/(1-eps) <= 1 + 2 * M^(1-s) / (s/2 - 1), so we have
eps <= 2 * M^(1-s) / (s/2 - 1).
Since 0 < P(a,M) <= 1, this bounds the absolute error of 1/zeta(s).
*/
void
fmprb_zeta_inv_ui_euler_product(fmprb_t z, ulong s, long prec)
{
long wp, powprec;
fmprb_t t;
mp_limb_t p;
if (s < 6)
{
printf("too small s!\n");
abort();
}
/* heuristic */
wp = prec + FLINT_BIT_COUNT(prec) + (prec/s) + 4;
fmprb_init(t);
/* z = 1 */
fmprb_set_ui(z, 1UL);
/* z = 1 - 2^(-s) */
{
fmprb_t w;
fmprb_init(w);
fmpr_set_ui_2exp_si(fmprb_midref(w), 1, -s);
fmprb_sub(z, z, w, wp);
fmprb_clear(w);
}
p = 3UL;
while (1)
{
/* approximate magnitude of p^s */
double powmag = s * log(p) * 1.4426950408889634;
powprec = FLINT_MAX(wp - powmag, 8);
/* see error analysis */
if ((powmag >= prec) &&
-((s-1)*log(p-1)) - log(s/2-1) + 1 <= -(prec+1) * 0.69314718055995)
break;
fmprb_ui_pow_ui(t, p, s, powprec);
fmprb_div(t, z, t, powprec);
fmprb_sub(z, z, t, wp);
p = n_nextprime(p, 0);
}
/* Truncation error based on the termination test */
fmprb_add_error_2exp_si(z, -(prec+1));
fmprb_clear(t);
/* TODO: change precision to prec here */
}
void
fmprb_zeta_ui_euler_product(fmprb_t z, ulong s, long prec)
{
fmprb_t one;
fmprb_init(one);
fmprb_set_ui(one, 1);
fmprb_zeta_inv_ui_euler_product(z, s, prec);
fmprb_div(z, one, z, prec);
fmprb_clear(one);
}