mirror of
https://github.com/vale981/arb
synced 2025-03-06 09:51:39 -05:00
113 lines
3 KiB
C
113 lines
3 KiB
C
/*=============================================================================
|
|
|
|
This file is part of ARB.
|
|
|
|
ARB is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
ARB is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with ARB; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2012 Fredrik Johansson
|
|
|
|
******************************************************************************/
|
|
|
|
#include <math.h>
|
|
#include "fmprb.h"
|
|
|
|
/*
|
|
Let P(a,b) = prod_{a <= p <= b} (1 - p^(-s)).
|
|
Then 1/zeta(s) = P(a,M) * P(M+1,inf).
|
|
|
|
According to the analysis in S. Fillebrown,
|
|
"Faster Computation of Bernoulli Numbers", Journal of Algorithms 13,
|
|
431-445 (1992), it holds for all s >= 6 and M >= 1 that
|
|
(1/P(M+1,inf) - 1) <= 2 * M^(1-s) / (s/2 - 1).
|
|
|
|
Writing 1/zeta(s) = P(a,M) * (1 - eps) and solving for eps gives
|
|
|
|
1/(1-eps) <= 1 + 2 * M^(1-s) / (s/2 - 1), so we have
|
|
eps <= 2 * M^(1-s) / (s/2 - 1).
|
|
|
|
Since 0 < P(a,M) <= 1, this bounds the absolute error of 1/zeta(s).
|
|
*/
|
|
|
|
void
|
|
fmprb_zeta_inv_ui_euler_product(fmprb_t z, ulong s, long prec)
|
|
{
|
|
long wp, powprec;
|
|
fmprb_t t;
|
|
mp_limb_t p;
|
|
|
|
if (s < 6)
|
|
{
|
|
printf("too small s!\n");
|
|
abort();
|
|
}
|
|
|
|
/* heuristic */
|
|
wp = prec + FLINT_BIT_COUNT(prec) + (prec/s) + 4;
|
|
|
|
fmprb_init(t);
|
|
|
|
/* z = 1 */
|
|
fmprb_set_ui(z, 1UL);
|
|
|
|
/* z = 1 - 2^(-s) */
|
|
{
|
|
fmprb_t w;
|
|
fmprb_init(w);
|
|
fmpr_set_ui_2exp_si(fmprb_midref(w), 1, -s);
|
|
fmprb_sub(z, z, w, wp);
|
|
fmprb_clear(w);
|
|
}
|
|
|
|
p = 3UL;
|
|
|
|
while (1)
|
|
{
|
|
/* approximate magnitude of p^s */
|
|
double powmag = s * log(p) * 1.4426950408889634;
|
|
powprec = FLINT_MAX(wp - powmag, 8);
|
|
|
|
/* see error analysis */
|
|
if ((powmag >= prec) &&
|
|
-((s-1)*log(p-1)) - log(s/2-1) + 1 <= -(prec+1) * 0.69314718055995)
|
|
break;
|
|
|
|
fmprb_ui_pow_ui(t, p, s, powprec);
|
|
fmprb_div(t, z, t, powprec);
|
|
fmprb_sub(z, z, t, wp);
|
|
|
|
p = n_nextprime(p, 0);
|
|
}
|
|
|
|
/* Truncation error based on the termination test */
|
|
fmprb_add_error_2exp_si(z, -(prec+1));
|
|
|
|
fmprb_clear(t);
|
|
|
|
/* TODO: change precision to prec here */
|
|
}
|
|
|
|
void
|
|
fmprb_zeta_ui_euler_product(fmprb_t z, ulong s, long prec)
|
|
{
|
|
fmprb_t one;
|
|
fmprb_init(one);
|
|
fmprb_set_ui(one, 1);
|
|
fmprb_zeta_inv_ui_euler_product(z, s, prec);
|
|
fmprb_div(z, one, z, prec);
|
|
fmprb_clear(one);
|
|
}
|