arb/doc/source/fmprb_poly.rst
2013-03-04 10:25:26 +01:00

482 lines
23 KiB
ReStructuredText

**fmprb_poly.h** -- polynomials over the real numbers
===============================================================================
An *fmprb_poly_t* represents a polynomial over the real numbers,
implemented as an array of coefficients of type *fmprb_struct*.
Most functions are provided in two versions: an underscore method which
operates directly on pre-allocated arrays of coefficients and generally
has some restrictions (such as requiring the lengths to be nonzero
and not supporting aliasing of the input and output arrays),
and a non-underscore method which performs automatic memory
management and handles degenerate cases.
Types, macros and constants
-------------------------------------------------------------------------------
.. type:: fmprb_poly_struct
.. type:: fmprb_poly_t
Contains a pointer to an array of coefficients (coeffs), the used
length (length), and the allocated size of the array (alloc).
An *fmprb_poly_t* is defined as an array of length one of type
*fmprb_poly_struct*, permitting an *fmprb_poly_t* to
be passed by reference.
Memory management
-------------------------------------------------------------------------------
.. function:: void fmprb_poly_init(fmprb_poly_t poly)
Initializes the polynomial for use, setting it to the zero polynomial.
.. function:: void fmprb_poly_clear(fmprb_poly_t poly)
Clears the polynomial, deallocating all coefficients and the
coefficient array.
.. function:: void fmprb_poly_fit_length(fmprb_poly_t poly, long len)
Makes sures that the coefficient array of the polynomial contains at
least *len* initialized coefficients.
.. function:: void _fmprb_poly_set_length(fmprb_poly_t poly, long len)
Directly changes the length of the polynomial, without allocating or
deallocating coefficients. The value shold not exceed the allocation length.
.. function:: void _fmprb_poly_normalise(fmprb_poly_t poly)
Strips any trailing coefficients which are identical to zero.
.. function:: void fmprb_poly_zero(fmprb_poly_t poly)
.. function:: void fmprb_poly_one(fmprb_poly_t poly)
Sets *poly* to the constant 0 respectively 1.
Conversions
-------------------------------------------------------------------------------
.. function:: void fmprb_poly_set_fmpz_poly(fmprb_poly_t poly, const fmpz_poly_t src, long prec)
.. function:: void fmprb_poly_set_fmpq_poly(fmprb_poly_t poly, const fmpq_poly_t src, long prec)
.. function:: void fmprb_poly_set_si(fmprb_poly_t poly, long src)
Sets *poly* to *src*, rounding the coefficients to *prec* bits.
Input and output
-------------------------------------------------------------------------------
.. function:: void fmprb_poly_printd(const fmprb_poly_t poly, long digits)
Prints the polynomial as an array of coefficients, printing each
coefficient using *fmprb_printd*.
Random generation
-------------------------------------------------------------------------------
.. function:: void fmprb_poly_randtest(fmprb_poly_t poly, flint_rand_t state, long len, long prec, long mag_bits)
Creates a random polynomial with length at most *len*.
Comparisons
-------------------------------------------------------------------------------
.. function:: int fmprb_poly_contains_fmpq_poly(const fmprb_poly_t poly1, const fmpq_poly_t poly2)
Returns nonzero iff *poly1* contains *poly2*.
.. function:: int fmprb_poly_equal(const fmprb_t A, const fmprb_t B)
Returns nonzero iff *A* and *B* are equal as polynomial balls, i.e. all
coefficients have equal midpoint and radius.
.. function:: int _fmprb_poly_overlaps(const fmprb_struct * poly1, long len1, const fmprb_struct * poly2, long len2)
.. function:: int fmprb_poly_overlaps(const fmprb_poly_t poly1, const fmprb_poly_t poly2)
Returns nonzero iff *poly1* overlaps with *poly2*. The underscore
function requires that *len1* ist at least as large as *len2*.
Arithmetic
-------------------------------------------------------------------------------
.. function:: void _fmprb_poly_add(fmprb_struct * C, const fmprb_struct * A, long lenA, const fmprb_struct * B, long lenB, long prec)
Sets *{C, max(lenA, lenB)}* to the sum of *{A, lenA}* and *{B, lenB}*.
Allows aliasing of the input and output operands.
.. function:: void fmprb_poly_add(fmprb_poly_t C, const fmprb_poly_t A, const fmprb_poly_t B, long prec)
Sets *C* to the sum of *A* and *B*.
.. function:: void _fmprb_poly_mullow(fmprb_struct * C, const fmprb_struct * A, long lenA, const fmprb_struct * B, long lenB, long n, long prec)
Sets *{C, n}* to the product of *{A, lenA}* and *{B, lenB}*, truncated to
length *n*. The output is not allowed to be aliased with either of the
inputs. We require `\mathrm{lenA} \ge \mathrm{lenB} > 0`,
`n > 0`, `\mathrm{lenA} + \mathrm{lenB} - 1 \ge n`.
As currently implemented, this function puts each input polynomial on
a common exponent, truncates to prec bits, and multiplies exactly over
the integers. The output error is computed by cross-multiplying the
max norms.
.. function:: void fmprb_poly_mullow(fmprb_poly_t C, const fmprb_poly_t A, const fmprb_poly_t B, long n, long prec)
Sets *C* to the product of *A* and *B*, truncated to length *n*.
.. function:: void _fmprb_poly_mul(fmprb_struct * C, const fmprb_struct * A, long lenA, const fmprb_struct * B, long lenB, long prec)
Sets *{C, n}* to the product of *{A, lenA}* and *{B, lenB}*, truncated to
length *n*. The output is not allowed to be aliased with either of the
inputs. We require $\mathrm{lenA} \ge \mathrm{lenB} > 0$, $n > 0$.
This function currently calls *_fmprb_poly_mullow*.
.. function:: void fmprb_poly_mul(fmprb_poly_t C, const fmprb_poly_t A, const fmprb_poly_t B, long prec)
Sets *C* to the product of *A* and *B*.
.. function:: void _fmprb_poly_inv_series(fmprb_struct * Qinv, const fmprb_struct * Q, long len, long prec)
Sets *{Qinv, len}* to the power series inverse of *{Q, len}*. Uses Newton iteration.
.. function:: void fmprb_poly_inv_series(fmprb_poly_t Qinv, const fmprb_poly_t Q, long n, long prec)
Sets *Qinv* to the power series inverse of *Q*.
.. function:: void _fmprb_poly_div(fmprb_struct * Q, const fmprb_struct * A, long lenA, const fmprb_struct * B, long lenB, long prec)
.. function:: void _fmprb_poly_rem(fmprb_struct * R, const fmprb_struct * A, long lenA, const fmprb_struct * B, long lenB, long prec)
.. function:: void _fmprb_poly_divrem(fmprb_struct * Q, fmprb_struct * R, const fmprb_struct * A, long lenA, const fmprb_struct * B, long lenB, long prec)
.. function:: void fmprb_poly_divrem(fmprb_poly_t Q, fmprb_poly_t R, const fmprb_poly_t A, const fmprb_poly_t B, long prec)
Performs polynomial division with remainder, computing a quotient `Q` and
a remainder `R` such that `A = BQ + R`. The leading coefficient of `B` must
not contain zero. The implementation reverses the inputs and performs
power series division.
.. function:: void _fmprb_poly_div_root(fmprb_struct * Q, fmprb_t R, const fmprb_struct * A, long len, const fmprb_t c, long prec)
Divides `A` by the polynomial `x - c`, computing the quotient `Q` as well
as the remainder `R = f(c)`.
Composition
-------------------------------------------------------------------------------
.. function:: void _fmprb_poly_compose_horner(fmprb_struct * res, const fmprb_struct * poly1, long len1, const fmprb_struct * poly2, long len2, long prec)
.. function:: void fmprb_poly_compose_horner(fmprb_poly_t res, const fmprb_poly_t poly1, const fmprb_poly_t poly2, long prec)
.. function:: void _fmprb_poly_compose_divconquer(fmprb_struct * res, const fmprb_struct * poly1, long len1, const fmprb_struct * poly2, long len2, long prec)
.. function:: void fmprb_poly_compose_divconquer(fmprb_poly_t res, const fmprb_poly_t poly1, const fmprb_poly_t poly2, long prec)
.. function:: void _fmprb_poly_compose(fmprb_struct * res, const fmprb_struct * poly1, long len1, const fmprb_struct * poly2, long len2, long prec)
.. function:: void fmprb_poly_compose(fmprb_poly_t res, const fmprb_poly_t poly1, const fmprb_poly_t poly2, long prec)
Sets *res* to the composition `h(x) = f(g(x))` where `f` is given by
*poly1* and `g` is given by *poly2*, respectively using Horner's rule,
divide-and-conquer, and an automatic choice between the two algorithms.
The underscore methods do not support aliasing of the output
with either input polynomial.
.. function:: void _fmprb_poly_compose_series_horner(fmprb_struct * res, const fmprb_struct * poly1, long len1, const fmprb_struct * poly2, long len2, long n, long prec)
.. function:: void fmprb_poly_compose_series_horner(fmprb_poly_t res, const fmprb_poly_t poly1, const fmprb_poly_t poly2, long n, long prec)
.. function:: void _fmprb_poly_compose_series_brent_kung(fmprb_struct * res, const fmprb_struct * poly1, long len1, const fmprb_struct * poly2, long len2, long n, long prec)
.. function:: void fmprb_poly_compose_series_brent_kung(fmprb_poly_t res, const fmprb_poly_t poly1, const fmprb_poly_t poly2, long n, long prec)
.. function:: void _fmprb_poly_compose_series(fmprb_struct * res, const fmprb_struct * poly1, long len1, const fmprb_struct * poly2, long len2, long n, long prec)
.. function:: void fmprb_poly_compose_series(fmprb_poly_t res, const fmprb_poly_t poly1, const fmprb_poly_t poly2, long n, long prec)
Sets *res* to the power series composition `h(x) = f(g(x))` truncated
to order `O(x^n)` where `f` is given by *poly1* and `g` is given by *poly2*,
respectively using Horner's rule, the Brent-Kung baby step-giant step
algorithm, and an automatic choice between the two algorithms.
We require that the constant term in `g(x)` is exactly zero.
The underscore methods do not support aliasing of the output
with either input polynomial.
Evaluation
-------------------------------------------------------------------------------
.. function:: void _fmprb_poly_evaluate_horner(fmprb_t y, const fmprb_struct * f, long len, const fmprb_t x, long prec)
.. function:: void fmprb_poly_evaluate_horner(fmprb_t y, const fmprb_poly_t f, const fmprb_t x, long prec)
.. function:: void _fmprb_poly_evaluate_rectangular(fmprb_t y, const fmprb_struct * f, long len, const fmprb_t x, long prec)
.. function:: void fmprb_poly_evaluate_rectangular(fmprb_t y, const fmprb_poly_t f, const fmprb_t x, long prec)
.. function:: void _fmprb_poly_evaluate(fmprb_t y, const fmprb_struct * f, long len, const fmprb_t x, long prec)
.. function:: void fmprb_poly_evaluate(fmprb_t y, const fmprb_poly_t f, const fmprb_t x, long prec)
Sets `y = f(x)`, evaluated respectively using Horner's rule,
rectangular splitting, and an automatic algorithm choice.
.. function:: void _fmprb_poly_evaluate_fmpcb_horner(fmpcb_t y, const fmprb_struct * f, long len, const fmpcb_t x, long prec)
.. function:: void fmprb_poly_evaluate_fmpcb_horner(fmpcb_t y, const fmprb_poly_t f, const fmpcb_t x, long prec)
.. function:: void _fmprb_poly_evaluate_fmpcb_rectangular(fmpcb_t y, const fmprb_struct * f, long len, const fmpcb_t x, long prec)
.. function:: void fmprb_poly_evaluate_fmpcb_rectangular(fmpcb_t y, const fmprb_poly_t f, const fmpcb_t x, long prec)
.. function:: void _fmprb_poly_evaluate_fmpcb(fmpcb_t y, const fmprb_struct * f, long len, const fmpcb_t x, long prec)
.. function:: void fmprb_poly_evaluate_fmpcb(fmpcb_t y, const fmprb_poly_t f, const fmpcb_t x, long prec)
Sets `y = f(x)` where `x` is a complex number, evaluating the
polynomial respectively using Horner's rule,
rectangular splitting, and an automatic algorithm choice.
.. function:: void _fmprb_poly_evaluate2_horner(fmprb_t y, fmprb_t z, const fmprb_struct * f, long len, const fmprb_t x, long prec)
.. function:: void fmprb_poly_evaluate2_horner(fmprb_t y, fmprb_t z, const fmprb_poly_t f, const fmprb_t x, long prec)
.. function:: void _fmprb_poly_evaluate2_rectangular(fmprb_t y, fmprb_t z, const fmprb_struct * f, long len, const fmprb_t x, long prec)
.. function:: void fmprb_poly_evaluate2_rectangular(fmprb_t y, fmprb_t z, const fmprb_poly_t f, const fmprb_t x, long prec)
.. function:: void _fmprb_poly_evaluate2(fmprb_t y, fmprb_t z, const fmprb_struct * f, long len, const fmprb_t x, long prec)
.. function:: void fmprb_poly_evaluate2(fmprb_t y, fmprb_t z, const fmprb_poly_t f, const fmprb_t x, long prec)
Sets `y = f(x), z = f'(x)`, evaluated respectively using Horner's rule,
rectangular splitting, and an automatic algorithm choice.
When Horner's rule is used, the only advantage of evaluating the
function and its derivative simultaneously is that one does not have
to generate the derivative polynomial explicitly.
With the rectangular splitting algorithm, the powers can be reused,
making simultaneous evaluation slightly faster.
.. function:: void _fmprb_poly_evaluate2_fmpcb_horner(fmpcb_t y, fmpcb_t z, const fmprb_struct * f, long len, const fmpcb_t x, long prec)
.. function:: void fmprb_poly_evaluate2_fmpcb_horner(fmpcb_t y, fmpcb_t z, const fmprb_poly_t f, const fmpcb_t x, long prec)
.. function:: void _fmprb_poly_evaluate2_fmpcb_rectangular(fmpcb_t y, fmpcb_t z, const fmprb_struct * f, long len, const fmpcb_t x, long prec)
.. function:: void fmprb_poly_evaluate2_fmpcb_rectangular(fmpcb_t y, fmpcb_t z, const fmprb_poly_t f, const fmpcb_t x, long prec)
.. function:: void _fmprb_poly_evaluate2_fmpcb(fmpcb_t y, fmpcb_t z, const fmprb_struct * f, long len, const fmpcb_t x, long prec)
.. function:: void fmprb_poly_evaluate2_fmpcb(fmpcb_t y, fmpcb_t z, const fmprb_poly_t f, const fmpcb_t x, long prec)
Sets `y = f(x), z = f'(x)`, evaluated respectively using Horner's rule,
rectangular splitting, and an automatic algorithm choice.
Product trees
-------------------------------------------------------------------------------
.. function:: void _fmprb_poly_product_roots(fmprb_struct * poly, const fmprb_struct * xs, long n, long prec)
.. function:: void fmprb_poly_product_roots(fmprb_poly_t poly, fmprb_struct * xs, long n, long prec)
Generates the polynomial `(x-x_0)(x-x_1)\cdots(x-x_{n-1})`.
.. function:: fmprb_struct ** _fmprb_poly_tree_alloc(long len)
Returns an initialized data structured capable of representing a
remainder tree (product tree) of *len* roots.
.. function:: void _fmprb_poly_tree_free(fmprb_struct ** tree, long len)
Deallocates a tree structure as allocated using *_fmprb_poly_tree_alloc*.
.. function:: void _fmprb_poly_tree_build(fmprb_struct ** tree, const fmprb_struct * roots, long len, long prec)
Constructs a product tree from a given array of *len* roots. The tree
structure must be pre-allocated to the specified length using
*_fmprb_poly_tree_alloc*.
Multipoint evaluation
-------------------------------------------------------------------------------
.. function:: void _fmprb_poly_evaluate_vec_iter(fmprb_struct * ys, const fmprb_struct * poly, long plen, const fmprb_struct * xs, long n, long prec)
.. function:: void fmprb_poly_evaluate_vec_iter(fmprb_struct * ys, const fmprb_poly_t poly, const fmprb_struct * xs, long n, long prec)
Evaluates the polynomial simultaneously at *n* given points, calling
*_fmprb_poly_evaluate* repeatedly.
.. function:: void _fmprb_poly_evaluate_vec_fast_precomp(fmprb_struct * vs, const fmprb_struct * poly, long plen, fmprb_struct ** tree, long len, long prec)
.. function:: void _fmprb_poly_evaluate_vec_fast(fmprb_struct * ys, const fmprb_struct * poly, long plen, const fmprb_struct * xs, long n, long prec)
.. function:: void fmprb_poly_evaluate_vec_fast(fmprb_struct * ys, const fmprb_poly_t poly, const fmprb_struct * xs, long n, long prec)
Evaluates the polynomial simultaneously at *n* given points, using
fast multipoint evaluation.
Interpolation
-------------------------------------------------------------------------------
.. function:: void _fmprb_poly_interpolate_newton(fmprb_struct * poly, const fmprb_struct * xs, const fmprb_struct * ys, long n, long prec)
.. function:: void fmprb_poly_interpolate_newton(fmprb_poly_t poly, const fmprb_struct * xs, const fmprb_struct * ys, long n, long prec)
Recovers the unique polynomial of length at most *n* that interpolates
the given *x* and *y* values. This implementation first interpolates in the
Newton basis and then converts back to the monomial basis.
.. function:: void _fmprb_poly_interpolate_barycentric(fmprb_struct * poly, const fmprb_struct * xs, const fmprb_struct * ys, long n, long prec)
.. function:: void fmprb_poly_interpolate_barycentric(fmprb_poly_t poly, const fmprb_struct * xs, const fmprb_struct * ys, long n, long prec)
Recovers the unique polynomial of length at most *n* that interpolates
the given *x* and *y* values. This implementation uses the barycentric
form of Lagrange interpolation.
.. function:: void _fmprb_poly_interpolation_weights(fmprb_struct * w, fmprb_struct ** tree, long len, long prec)
.. function:: void _fmprb_poly_interpolate_fast_precomp(fmprb_struct * poly, const fmprb_struct * ys, fmprb_struct ** tree, const fmprb_struct * weights, long len, long prec)
.. function:: void _fmprb_poly_interpolate_fast(fmprb_struct * poly, const fmprb_struct * xs, const fmprb_struct * ys, long len, long prec)
.. function:: void fmprb_poly_interpolate_fast(fmprb_poly_t poly, const fmprb_struct * xs, const fmprb_struct * ys, long n, long prec)
Recovers the unique polynomial of length at most *n* that interpolates
the given *x* and *y* values, using fast Lagrange interpolation.
The precomp function takes a precomputed product tree over the
*x* values and a vector of interpolation weights as additional inputs.
Differentiation
-------------------------------------------------------------------------------
.. function:: void _fmprb_poly_derivative(fmprb_struct * res, const fmprb_struct * poly, long len, long prec)
Sets *{res, len - 1}* to the derivative of *{poly, len}*.
Allows aliasing of the input and output.
.. function:: void fmprb_poly_derivative(fmprb_poly_t res, const fmprb_poly_t poly, long prec)
Sets *res* to the derivative of *poly*.
.. function:: void _fmprb_poly_integral(fmprb_struct * res, const fmprb_struct * poly, long len, long prec)
Sets *{res, len}* to the integral of *{poly, len - 1}*.
Allows aliasing of the input and output.
.. function:: void fmprb_poly_integral(fmprb_poly_t res, const fmprb_poly_t poly, long prec)
Sets *res* to the integral of *poly*.
Special functions
-------------------------------------------------------------------------------
.. function:: void _fmprb_poly_log_series(fmprb_struct * f, fmprb_struct * h, long n, long prec)
.. function:: void fmprb_poly_log_series(fmprb_poly_t f, const fmprb_poly_t h, long n, long prec)
Sets `f` to the power series logarithm of `h`, truncated to length `n`.
Uses the formula `\log f = \int f' / f`, adding the logarithm of the
constant term in `h` as the constant of integration.
The underscore method does not support aliasing of the input and output
arrays.
.. function:: void _fmprb_poly_exp_series_basecase(fmprb_struct * f, const fmprb_struct * h, long hlen, long n, long prec)
.. function:: void fmprb_poly_exp_series_basecase(fmprb_poly_t f, const fmprb_poly_t h, long n, long prec)
.. function:: void _fmprb_poly_exp_series(fmprb_struct * f, const fmprb_struct * h, long hlen, long n, long prec)
.. function:: void fmprb_poly_exp_series(fmprb_poly_t f, const fmprb_poly_t h, long n, long prec)
Sets `f` to the power series exponential of `h`, truncated to length `n`.
The basecase version uses a simple recurrence for the coefficients,
requiring `O(nm)` operations where `m` is the length of `h`.
The main implementation uses Newton iteration, starting from a small
number of terms given by the basecase algorithm. The complexity
is `O(M(n))`. Redundant operations in the Newton iteration are
avoided by using the scheme described in [HZ2004]_.
The underscore methods support aliasing and allow the input to be
shorter than the output, but require the lengths to be nonzero.
.. function:: void fmprb_poly_log_gamma_series(fmprb_poly_t f, long n, long prec)
Sets `f` to the series expansion of `\log(\Gamma(1-x))`, truncated to
length `n`.
.. function:: void _fmprb_poly_rfac_series_ui(fmprb_struct * res, const fmprb_struct * f, long flen, ulong r, long trunc, long prec)
.. function:: void fmprb_poly_rfac_series_ui(fmprb_poly_t res, const fmprb_poly_t f, ulong r, long trunc, long prec)
Sets *res* to the rising factorial `(f) (f+1) (f+2) \cdots (f+r-1)`, truncated
to length *trunc*. The underscore method assumes that *flen*, *r* and *trunc*
are at least 1, and does not support aliasing. Uses binary splitting.
Root-finding
-------------------------------------------------------------------------------
.. function:: void _fmprb_poly_newton_convergence_factor(fmpr_t convergence_factor, const fmprb_struct * poly, long len, const fmprb_t convergence_interval, long prec)
Given an interval `I` specified by *convergence_interval*, evaluates a bound
for `C = \sup_{t,u \in I} \frac{1}{2} |f''(t)| / |f'(u)|`,
where `f` is the polynomial defined by the coefficients *{poly, len}*.
The bound is obtained by evaluating `f'(I)` and `f''(I)` directly.
If `f` has large coefficients, `I` must be extremely precise in order to
get a finite factor.
.. function:: int _fmprb_poly_newton_step(fmprb_t xnew, const fmprb_struct * poly, long len, const fmprb_t x, const fmprb_t convergence_interval, const fmpr_t convergence_factor, long prec)
Performs a single step with Newton's method.
The input consists of the polynomial `f` specified by the coefficients
*{poly, len}*, an interval `x = [m-r, m+r]` known to contain a single root of `f`,
an interval `I` (*convergence_interval*) containing `x` with an
associated bound (*convergence_factor*) for
`C = \sup_{t,u \in I} \frac{1}{2} |f''(t)| / |f'(u)|`,
and a working precision *prec*.
The Newton update consists of setting
`x' = [m'-r', m'+r']` where `m' = m - f(m) / f'(m)`
and `r' = C r^2`. The expression `m - f(m) / f'(m)` is evaluated
using ball arithmetic at a working precision of *prec* bits, and the
rounding error during this evaluation is accounted for in the output.
We now check that `x' \in I` and `m' < m`. If both conditions are
satisfied, we set *xnew* to `x'` and return nonzero.
If either condition fails, we set *xnew* to `x` and return zero,
indicating that no progress was made.
.. function:: void _fmprb_poly_newton_refine_root(fmprb_t r, const fmprb_struct * poly, long len, const fmprb_t start, const fmprb_t convergence_interval, const fmpr_t convergence_factor, long eval_extra_prec, long prec)
Refines a precise estimate of a polynomial root to high precision
by performing several Newton steps, using nearly optimally
chosen doubling precision steps.
The inputs are defined as for *_fmprb_poly_newton_step*, except for
the precision parameters: *prec* is the target accuracy and
*eval_extra_prec* is the estimated number of guard bits that need
to be added to evaluate the polynomial accurately close to the root
(typically, if the polynomial has large coefficients of alternating
signs, this needs to be approximately the bit size of the coefficients).