arb/zeta/series_em_bound.c
2013-03-27 15:54:05 +01:00

261 lines
6.6 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012 Fredrik Johansson
******************************************************************************/
#include "zeta.h"
#include "fmprb_poly.h"
#include "fmpcb_poly.h"
void
bound_I(fmprb_struct * I, const fmprb_t A, const fmprb_t B, const fmprb_t C, long len, long wp)
{
long k;
fmprb_t D, Dk, L, T, Bm1;
fmprb_init(D);
fmprb_init(Dk);
fmprb_init(Bm1);
fmprb_init(T);
fmprb_init(L);
fmprb_sub_ui(Bm1, B, 1, wp);
fmprb_one(L);
/* T = 1 / (A^Bm1 * Bm1) */
fmprb_ui_div(T, 1, A, wp);
fmprb_pow(T, T, Bm1, wp);
fmprb_div(T, T, Bm1, wp);
if (len > 1)
{
fmprb_log(D, A, wp);
fmprb_add(D, D, C, wp);
fmprb_mul(D, D, Bm1, wp);
fmprb_set(Dk, D);
}
for (k = 0; k < len; k++)
{
if (k > 0)
{
fmprb_mul_ui(L, L, k, wp);
fmprb_add(L, L, Dk, wp);
fmprb_mul(Dk, Dk, D, wp);
}
fmprb_mul(I + k, L, T, wp);
fmprb_div(T, T, Bm1, wp);
}
fmprb_clear(D);
fmprb_clear(Dk);
fmprb_clear(Bm1);
fmprb_clear(T);
fmprb_clear(L);
}
/* 0.5*(B/AN)^2 + |B|/AN */
void
bound_C(fmprb_t C, const fmprb_t AN, const fmprb_t B, long wp)
{
fmprb_t t;
fmprb_init(t);
fmprb_abs(t, B);
fmprb_div(t, t, AN, wp);
fmprb_mul_2exp_si(C, t, -1);
fmprb_add_ui(C, C, 1, wp);
fmprb_mul(C, C, t, wp);
fmprb_clear(t);
}
void
bound_K(fmprb_t C, const fmprb_t AN, const fmprb_t B, const fmprb_t T, long wp)
{
if (fmprb_is_zero(B) || fmprb_is_zero(T))
{
fmprb_one(C);
}
else
{
fmprb_div(C, B, AN, wp);
/* TODO: atan is dumb, should also bound by pi/2 */
fmprb_atan(C, C, wp);
fmprb_mul(C, C, T, wp);
if (fmprb_is_nonpositive(C))
fmprb_one(C);
else
fmprb_exp(C, C, wp);
}
}
/* Absolute value of rising factorial (could speed up once complex gamma is available). */
void
fmpcb_rfac_abs_ubound2(fmpr_t bound, const fmpcb_t s, ulong n, long prec)
{
fmpr_t term, t;
ulong k;
/* M(k) = (a+k)^2 + b^2
M(0) = a^2 + b^2
M(k+1) = M(k) + 2*a + (2*k+1)
*/
fmpr_init(t);
fmpr_init(term);
fmpr_one(bound);
/* M(0) = a^2 + b^2 */
fmprb_get_abs_ubound_fmpr(t, fmpcb_realref(s), prec);
fmpr_mul(term, t, t, prec, FMPR_RND_UP);
fmprb_get_abs_ubound_fmpr(t, fmpcb_imagref(s), prec);
fmpr_mul(t, t, t, prec, FMPR_RND_UP);
fmpr_add(term, term, t, prec, FMPR_RND_UP);
/* we add t = 2*a to each term. note that this can be signed;
we always want the most positive value */
fmpr_add(t, fmprb_midref(fmpcb_realref(s)),
fmprb_radref(fmpcb_realref(s)), prec, FMPR_RND_CEIL);
fmpr_mul_2exp_si(t, t, 1);
for (k = 0; k < n; k++)
{
fmpr_mul(bound, bound, term, prec, FMPR_RND_UP);
fmpr_add_ui(term, term, 2 * k + 1, prec, FMPR_RND_UP);
fmpr_add(term, term, t, prec, FMPR_RND_UP);
}
fmpr_sqrt(bound, bound, prec, FMPR_RND_UP);
fmpr_clear(t);
fmpr_clear(term);
}
void
bound_rfac(fmprb_struct * F, const fmpcb_t s, ulong n, long len, long wp)
{
if (len == 1)
{
fmpcb_rfac_abs_ubound2(fmprb_midref(F + 0), s, n, wp);
fmpr_zero(fmprb_radref(F + 0));
}
else
{
fmprb_struct sx[2];
fmprb_init(sx + 0);
fmprb_init(sx + 1);
fmpcb_abs(sx + 0, s, wp);
fmprb_one(sx + 1);
_fmprb_vec_zero(F, len);
_fmprb_poly_rfac_series_ui(F, sx, 2, n, len, wp);
fmprb_clear(sx + 0);
fmprb_clear(sx + 1);
}
}
void
zeta_series_em_vec_bound(fmprb_struct * bound, const fmpcb_t s, const fmpcb_t a, ulong N, ulong M, long len, long wp)
{
fmprb_t K, C, AN, S2M;
fmprb_struct *F, *R;
long k;
const fmprb_struct * alpha = fmpcb_realref(a);
const fmprb_struct * beta = fmpcb_imagref(a);
const fmprb_struct * sigma = fmpcb_realref(s);
const fmprb_struct * tau = fmpcb_imagref(s);
fmprb_init(AN);
fmprb_init(S2M);
/* require alpha + N > 1, sigma + 2M > 1 */
fmprb_add_ui(AN, alpha, N - 1, wp);
fmprb_add_ui(S2M, sigma, 2*M - 1, wp);
if (!fmprb_is_positive(AN) || !fmprb_is_positive(S2M) || N < 1 || M < 1)
{
fmprb_clear(AN);
fmprb_clear(S2M);
for (k = 0; k < len; k++)
{
fmpr_pos_inf(fmprb_midref(bound + k));
fmpr_zero(fmprb_radref(bound + k));
}
return;
}
/* alpha + N, sigma + 2M */
fmprb_add_ui(AN, AN, 1, wp);
fmprb_add_ui(S2M, S2M, 1, wp);
R = _fmprb_vec_init(len);
F = _fmprb_vec_init(len);
fmprb_init(K);
fmprb_init(C);
/* bound for power integral */
bound_C(C, AN, beta, wp);
bound_K(K, AN, beta, tau, wp);
bound_I(R, AN, S2M, C, len, wp);
for (k = 0; k < len; k++)
{
fmprb_mul(R + k, R + k, K, wp);
fmprb_div_ui(K, K, k + 1, wp);
}
/* bound for rising factorial */
bound_rfac(F, s, 2*M, len, wp);
/* product */
_fmprb_poly_mullow(bound, F, len, R, len, len, wp);
/* bound for bernoulli polynomials, 4 / (2pi)^(2M) */
fmprb_const_pi(C, wp);
fmprb_mul_2exp_si(C, C, 1);
fmprb_pow_ui(C, C, 2 * M, wp);
fmprb_ui_div(C, 4, C, wp);
_fmprb_vec_scalar_mul(bound, bound, len, C, wp);
fmprb_clear(K);
fmprb_clear(C);
fmprb_clear(AN);
fmprb_clear(S2M);
_fmprb_vec_clear(R, len);
_fmprb_vec_clear(F, len);
}
void
zeta_series_em_bound(fmpr_t bound,
const fmpcb_t s, const fmpcb_t a, long N, long M, long len, long wp)
{
fmprb_struct * vec = _fmprb_vec_init(len);
zeta_series_em_vec_bound(vec, s, a, N, M, len, wp);
_fmprb_vec_get_abs_ubound_fmpr(bound, vec, len, wp);
_fmprb_vec_clear(vec, len);
}