mirror of
https://github.com/vale981/arb
synced 2025-03-05 09:21:38 -05:00
319 lines
7.7 KiB
C
319 lines
7.7 KiB
C
/*
|
|
Copyright (C) 2015 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_hypgeom.h"
|
|
|
|
void
|
|
acb_hypgeom_m_asymp(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec)
|
|
{
|
|
acb_t t, u, v, c;
|
|
|
|
acb_init(t);
|
|
acb_init(u);
|
|
acb_init(v);
|
|
acb_init(c);
|
|
|
|
acb_sub(c, b, a, prec);
|
|
acb_neg(v, z);
|
|
|
|
acb_hypgeom_u_asymp(t, a, b, z, -1, prec);
|
|
acb_hypgeom_u_asymp(u, c, b, v, -1, prec);
|
|
|
|
/* gamma(b-a) */
|
|
acb_rgamma(v, c, prec);
|
|
acb_mul(t, t, v, prec);
|
|
|
|
/* z^(a-b) */
|
|
acb_neg(c, c);
|
|
acb_pow(v, z, c, prec);
|
|
acb_mul(u, u, v, prec);
|
|
|
|
/* gamma(a) */
|
|
acb_rgamma(v, a, prec);
|
|
acb_mul(u, u, v, prec);
|
|
|
|
/* exp(z) */
|
|
acb_exp(v, z, prec);
|
|
acb_mul(u, u, v, prec);
|
|
|
|
/* (-z)^(-a) */
|
|
acb_neg(c, a);
|
|
acb_neg(v, z);
|
|
acb_pow(v, v, c, prec);
|
|
acb_mul(t, t, v, prec);
|
|
|
|
acb_add(t, t, u, prec);
|
|
|
|
if (!regularized)
|
|
{
|
|
acb_gamma(v, b, prec);
|
|
acb_mul(t, t, v, prec);
|
|
}
|
|
|
|
if (acb_is_real(a) && acb_is_real(b) && acb_is_real(z))
|
|
{
|
|
arb_zero(acb_imagref(t));
|
|
}
|
|
|
|
acb_swap(res, t);
|
|
|
|
acb_clear(t);
|
|
acb_clear(u);
|
|
acb_clear(v);
|
|
acb_clear(c);
|
|
}
|
|
|
|
void
|
|
_acb_hypgeom_m_1f1(acb_t res, const acb_t a, const acb_t b, const acb_t z,
|
|
int regularized, slong prec, slong gamma_prec, int kummer)
|
|
{
|
|
if (regularized)
|
|
{
|
|
/* Remove singularity */
|
|
if (acb_is_int(b) && arb_is_nonpositive(acb_realref(b)) &&
|
|
arf_cmpabs_2exp_si(arb_midref(acb_realref(b)), 30) < 0)
|
|
{
|
|
acb_t c, d, t, u;
|
|
slong n;
|
|
|
|
n = arf_get_si(arb_midref(acb_realref(b)), ARF_RND_DOWN);
|
|
|
|
acb_init(c);
|
|
acb_init(d);
|
|
acb_init(t);
|
|
acb_init(u);
|
|
|
|
acb_sub(c, a, b, prec);
|
|
acb_add_ui(c, c, 1, prec);
|
|
|
|
acb_neg(d, b);
|
|
acb_add_ui(d, d, 2, prec);
|
|
|
|
_acb_hypgeom_m_1f1(t, c, d, z, 0, prec, gamma_prec, kummer);
|
|
|
|
acb_pow_ui(u, z, 1 - n, prec);
|
|
acb_mul(t, t, u, prec);
|
|
|
|
acb_rising_ui(u, a, 1 - n, prec);
|
|
acb_mul(t, t, u, prec);
|
|
|
|
arb_fac_ui(acb_realref(u), 1 - n, prec);
|
|
acb_div_arb(res, t, acb_realref(u), prec);
|
|
|
|
acb_clear(c);
|
|
acb_clear(d);
|
|
acb_clear(t);
|
|
acb_clear(u);
|
|
}
|
|
else
|
|
{
|
|
acb_t t;
|
|
acb_init(t);
|
|
acb_rgamma(t, b, gamma_prec);
|
|
_acb_hypgeom_m_1f1(res, a, b, z, 0, prec, gamma_prec, kummer);
|
|
acb_mul(res, res, t, prec);
|
|
acb_clear(t);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Kummer's transformation */
|
|
if (kummer)
|
|
{
|
|
acb_t u, v;
|
|
acb_init(u);
|
|
acb_init(v);
|
|
|
|
acb_sub(u, b, a, prec);
|
|
acb_neg(v, z);
|
|
|
|
_acb_hypgeom_m_1f1(u, u, b, v, regularized, prec, gamma_prec, 0);
|
|
acb_exp(v, z, prec);
|
|
acb_mul(res, u, v, prec);
|
|
|
|
acb_clear(u);
|
|
acb_clear(v);
|
|
return;
|
|
}
|
|
|
|
if (acb_is_one(a))
|
|
{
|
|
acb_hypgeom_pfq_direct(res, NULL, 0, b, 1, z, -1, prec);
|
|
}
|
|
else
|
|
{
|
|
acb_struct c[3];
|
|
c[0] = *a;
|
|
c[1] = *b;
|
|
|
|
acb_init(c + 2);
|
|
acb_one(c + 2);
|
|
|
|
acb_hypgeom_pfq_direct(res, c, 1, c + 1, 2, z, -1, prec);
|
|
|
|
acb_clear(c + 2);
|
|
}
|
|
}
|
|
|
|
void
|
|
acb_hypgeom_m_1f1(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec)
|
|
{
|
|
if (arf_sgn(arb_midref(acb_realref(z))) >= 0
|
|
|| (acb_is_int(a) && arb_is_nonpositive(acb_realref(a))))
|
|
{
|
|
_acb_hypgeom_m_1f1(res, a, b, z, regularized, prec, prec, 0);
|
|
}
|
|
else
|
|
{
|
|
_acb_hypgeom_m_1f1(res, a, b, z, regularized, prec, prec, 1);
|
|
}
|
|
}
|
|
|
|
static double
|
|
hypotmx(double x, double y)
|
|
{
|
|
if (x > 0.0 && x > 1e6 * fabs(y))
|
|
return y * y / (2.0 * x);
|
|
else
|
|
return sqrt(x * x + y * y) - x;
|
|
}
|
|
|
|
void
|
|
acb_hypgeom_m_choose(int * asymp, int * kummer, slong * wp,
|
|
const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec)
|
|
{
|
|
double x, y, t, cancellation;
|
|
double input_accuracy, direct_accuracy, asymp_accuracy;
|
|
slong m = WORD_MAX;
|
|
slong n = WORD_MAX;
|
|
|
|
if (acb_is_int(a) &&
|
|
arf_cmpabs_2exp_si(arb_midref(acb_realref(a)), 30) < 0)
|
|
{
|
|
m = arf_get_si(arb_midref(acb_realref(a)), ARF_RND_DOWN);
|
|
}
|
|
|
|
if (acb_is_int(b) &&
|
|
arf_cmpabs_2exp_si(arb_midref(acb_realref(b)), 30) < 0)
|
|
{
|
|
n = arf_get_si(arb_midref(acb_realref(b)), ARF_RND_DOWN);
|
|
}
|
|
|
|
*asymp = 0;
|
|
*kummer = 0;
|
|
*wp = prec;
|
|
|
|
/* The 1F1 series terminates. */
|
|
/* TODO: for large m, estimate extra precision here. */
|
|
if (m <= 0 && m < n && m > -10 * prec && (n > 0 || !regularized))
|
|
{
|
|
*asymp = 0;
|
|
return;
|
|
}
|
|
|
|
/* The 1F1 series terminates with the Kummer transform. */
|
|
/* TODO: for large m, estimate extra precision here. */
|
|
if (m >= 1 && n >= 1 && m < 0.1 * prec && n < 0.1 * prec && n <= m)
|
|
{
|
|
*asymp = 0;
|
|
*kummer = 1;
|
|
return;
|
|
}
|
|
|
|
input_accuracy = acb_rel_one_accuracy_bits(z);
|
|
t = acb_rel_one_accuracy_bits(a);
|
|
input_accuracy = FLINT_MIN(input_accuracy, t);
|
|
t = acb_rel_one_accuracy_bits(b);
|
|
input_accuracy = FLINT_MIN(input_accuracy, t);
|
|
input_accuracy = FLINT_MAX(input_accuracy, 0.0);
|
|
|
|
/* From here we ignore the values of a, b. Taking them into account is
|
|
a possible future improvement... */
|
|
|
|
/* Tiny |z|. */
|
|
if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 2) < 0 &&
|
|
arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 2) < 0))
|
|
{
|
|
*asymp = 0;
|
|
*wp = FLINT_MAX(2, FLINT_MIN(input_accuracy + 20, prec));
|
|
return;
|
|
}
|
|
|
|
/* Huge |z|. */
|
|
if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 64) > 0 ||
|
|
arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 64) > 0))
|
|
{
|
|
*asymp = 1;
|
|
*wp = FLINT_MAX(2, FLINT_MIN(input_accuracy + 20, prec));
|
|
return;
|
|
}
|
|
|
|
x = arf_get_d(arb_midref(acb_realref(z)), ARF_RND_DOWN);
|
|
y = arf_get_d(arb_midref(acb_imagref(z)), ARF_RND_DOWN);
|
|
|
|
asymp_accuracy = sqrt(x * x + y * y) * 1.44269504088896 - 5.0;
|
|
|
|
/* The Kummer transformation gives less cancellation with the 1F1 series. */
|
|
if (x < 0.0)
|
|
{
|
|
*kummer = 1;
|
|
x = -x;
|
|
}
|
|
|
|
if (asymp_accuracy >= prec)
|
|
{
|
|
*asymp = 1;
|
|
*wp = FLINT_MAX(2, FLINT_MIN(input_accuracy + 20, prec));
|
|
return;
|
|
}
|
|
|
|
cancellation = hypotmx(x, y) * 1.44269504088896;
|
|
|
|
direct_accuracy = input_accuracy - cancellation;
|
|
|
|
if (direct_accuracy > asymp_accuracy)
|
|
{
|
|
*asymp = 0;
|
|
*wp = FLINT_MAX(2, FLINT_MIN(input_accuracy + 20, prec + cancellation));
|
|
}
|
|
else
|
|
{
|
|
*asymp = 1;
|
|
*wp = FLINT_MAX(2, FLINT_MIN(input_accuracy + 20, prec));
|
|
}
|
|
}
|
|
|
|
void
|
|
acb_hypgeom_m(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec)
|
|
{
|
|
int asymp, kummer;
|
|
slong wp;
|
|
|
|
acb_hypgeom_m_choose(&asymp, &kummer, &wp, a, b, z, regularized, prec);
|
|
|
|
if (asymp)
|
|
{
|
|
acb_hypgeom_m_asymp(res, a, b, z, regularized, wp);
|
|
}
|
|
else
|
|
{
|
|
_acb_hypgeom_m_1f1(res, a, b, z, regularized, wp, FLINT_MIN(wp, prec), kummer);
|
|
}
|
|
|
|
acb_set_round(res, res, prec);
|
|
}
|
|
|
|
void
|
|
acb_hypgeom_1f1(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec)
|
|
{
|
|
acb_hypgeom_m(res, a, b, z, regularized, prec);
|
|
}
|
|
|