mirror of
https://github.com/vale981/arb
synced 2025-03-05 09:21:38 -05:00
333 lines
7.6 KiB
C
333 lines
7.6 KiB
C
/*
|
|
Copyright (C) 2014 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_hypgeom.h"
|
|
|
|
/* IMAG: erf(z) = 2z/sqrt(pi) * 1F1(1/2, 3/2, -z^2) */
|
|
void
|
|
acb_hypgeom_erf_1f1a(acb_t res, const acb_t z, slong prec)
|
|
{
|
|
acb_t a, t, w;
|
|
acb_struct b[2];
|
|
|
|
acb_init(a);
|
|
acb_init(b);
|
|
acb_init(b + 1);
|
|
acb_init(t);
|
|
acb_init(w);
|
|
|
|
acb_one(a);
|
|
acb_mul_2exp_si(a, a, -1);
|
|
acb_set_ui(b, 3);
|
|
acb_mul_2exp_si(b, b, -1);
|
|
acb_one(b + 1);
|
|
|
|
acb_mul(w, z, z, prec);
|
|
acb_neg(w, w);
|
|
|
|
acb_hypgeom_pfq_direct(t, a, 1, b, 2, w, -1, prec);
|
|
|
|
acb_mul(t, t, z, prec);
|
|
arb_const_sqrt_pi(acb_realref(w), prec);
|
|
acb_div_arb(t, t, acb_realref(w), prec);
|
|
|
|
acb_mul_2exp_si(res, t, 1);
|
|
|
|
acb_clear(a);
|
|
acb_clear(b);
|
|
acb_clear(b + 1);
|
|
acb_clear(t);
|
|
acb_clear(w);
|
|
}
|
|
|
|
/* REAL: erf(x) = 2x/sqrt(pi) * exp(-x^2) 1F1(1, 3/2, x^2) */
|
|
void
|
|
acb_hypgeom_erf_1f1b(acb_t res, const acb_t z, slong prec)
|
|
{
|
|
acb_t a, b, t, w;
|
|
|
|
acb_init(a);
|
|
acb_init(b);
|
|
acb_init(t);
|
|
acb_init(w);
|
|
|
|
acb_set_ui(b, 3);
|
|
acb_mul_2exp_si(b, b, -1);
|
|
|
|
acb_mul(w, z, z, prec);
|
|
|
|
acb_hypgeom_pfq_direct(t, a, 0, b, 1, w, -1, prec);
|
|
|
|
acb_neg(w, w);
|
|
acb_exp(w, w, prec);
|
|
acb_mul(t, t, w, prec);
|
|
|
|
acb_mul(t, t, z, prec);
|
|
arb_const_sqrt_pi(acb_realref(w), prec);
|
|
acb_div_arb(t, t, acb_realref(w), prec);
|
|
|
|
acb_mul_2exp_si(res, t, 1);
|
|
|
|
acb_clear(a);
|
|
acb_clear(b);
|
|
acb_clear(t);
|
|
acb_clear(w);
|
|
}
|
|
|
|
void
|
|
acb_hypgeom_erf_asymp(acb_t res, const acb_t z, int complementary, slong prec, slong prec2)
|
|
{
|
|
acb_t a, t, u;
|
|
|
|
acb_init(a);
|
|
acb_init(t);
|
|
acb_init(u);
|
|
|
|
if (!acb_is_exact(z) &&
|
|
(arf_cmpabs_ui(arb_midref(acb_realref(z)), prec) < 0) &&
|
|
(arf_cmpabs_ui(arb_midref(acb_imagref(z)), prec) < 0))
|
|
{
|
|
acb_t zmid;
|
|
mag_t re_err, im_err;
|
|
|
|
acb_init(zmid);
|
|
mag_init(re_err);
|
|
mag_init(im_err);
|
|
|
|
acb_hypgeom_erf_propagated_error(re_err, im_err, z);
|
|
arf_set(arb_midref(acb_realref(zmid)), arb_midref(acb_realref(z)));
|
|
arf_set(arb_midref(acb_imagref(zmid)), arb_midref(acb_imagref(z)));
|
|
|
|
acb_hypgeom_erf_asymp(res, zmid, complementary, prec, prec2);
|
|
|
|
arb_add_error_mag(acb_realref(res), re_err);
|
|
arb_add_error_mag(acb_imagref(res), im_err);
|
|
|
|
acb_clear(zmid);
|
|
mag_clear(re_err);
|
|
mag_clear(im_err);
|
|
|
|
return;
|
|
}
|
|
|
|
acb_one(a);
|
|
acb_mul_2exp_si(a, a, -1);
|
|
acb_mul(t, z, z, prec2);
|
|
|
|
acb_hypgeom_u_asymp(u, a, a, t, -1, prec2);
|
|
|
|
acb_neg(t, t);
|
|
acb_exp(t, t, prec2);
|
|
acb_mul(u, u, t, prec2);
|
|
|
|
arb_const_sqrt_pi(acb_realref(t), prec2);
|
|
arb_zero(acb_imagref(t));
|
|
acb_mul(t, t, z, prec2);
|
|
acb_div(u, u, t, prec2);
|
|
|
|
/* branch cut term: -1 or 1 */
|
|
acb_csgn(acb_realref(t), z);
|
|
arb_zero(acb_imagref(t));
|
|
|
|
if (complementary)
|
|
{
|
|
/* erfc(z) = 1 - erf(z) = u - (sgn - 1) */
|
|
acb_sub_ui(t, t, 1, prec);
|
|
acb_sub(t, u, t, prec);
|
|
}
|
|
else
|
|
{
|
|
/* erf(z) = sgn - u */
|
|
acb_sub(t, t, u, prec);
|
|
}
|
|
|
|
if (arb_is_zero(acb_imagref(z)))
|
|
{
|
|
arb_zero(acb_imagref(t));
|
|
}
|
|
else if (arb_is_zero(acb_realref(z)))
|
|
{
|
|
if (complementary)
|
|
arb_one(acb_realref(t));
|
|
else
|
|
arb_zero(acb_realref(t));
|
|
}
|
|
|
|
acb_set(res, t);
|
|
|
|
acb_clear(a);
|
|
acb_clear(t);
|
|
acb_clear(u);
|
|
}
|
|
|
|
void
|
|
acb_hypgeom_erf_propagated_error(mag_t re, mag_t im, const acb_t z)
|
|
{
|
|
mag_t x, y;
|
|
|
|
mag_init(x);
|
|
mag_init(y);
|
|
|
|
/* |exp(-(x+y)^2)| = exp(y^2-x^2) */
|
|
arb_get_mag(y, acb_imagref(z));
|
|
mag_mul(y, y, y);
|
|
|
|
arb_get_mag_lower(x, acb_realref(z));
|
|
mag_mul_lower(x, x, x);
|
|
|
|
if (mag_cmp(y, x) >= 0)
|
|
{
|
|
mag_sub(re, y, x);
|
|
mag_exp(re, re);
|
|
}
|
|
else
|
|
{
|
|
mag_sub_lower(re, x, y);
|
|
mag_expinv(re, re);
|
|
}
|
|
|
|
/* Radius. */
|
|
mag_hypot(x, arb_radref(acb_realref(z)), arb_radref(acb_imagref(z)));
|
|
mag_mul(re, re, x);
|
|
|
|
/* 2/sqrt(pi) < 289/256 */
|
|
mag_mul_ui(re, re, 289);
|
|
mag_mul_2exp_si(re, re, -8);
|
|
|
|
if (arb_is_zero(acb_imagref(z)))
|
|
{
|
|
/* todo: could bound magnitude even for complex numbers */
|
|
mag_set_ui(y, 2);
|
|
mag_min(re, re, y);
|
|
|
|
mag_zero(im);
|
|
}
|
|
else if (arb_is_zero(acb_realref(z)))
|
|
{
|
|
mag_swap(im, re);
|
|
mag_zero(re);
|
|
}
|
|
else
|
|
{
|
|
mag_set(im, re);
|
|
}
|
|
|
|
mag_clear(x);
|
|
mag_clear(y);
|
|
}
|
|
|
|
void
|
|
acb_hypgeom_erf_1f1(acb_t res, const acb_t z, slong prec,
|
|
slong wp, int more_imaginary)
|
|
{
|
|
if (acb_rel_accuracy_bits(z) >= wp)
|
|
{
|
|
if (more_imaginary)
|
|
acb_hypgeom_erf_1f1a(res, z, wp);
|
|
else
|
|
acb_hypgeom_erf_1f1b(res, z, wp);
|
|
}
|
|
else
|
|
{
|
|
acb_t zmid;
|
|
mag_t re_err, im_err;
|
|
|
|
acb_init(zmid);
|
|
mag_init(re_err);
|
|
mag_init(im_err);
|
|
|
|
acb_hypgeom_erf_propagated_error(re_err, im_err, z);
|
|
arf_set(arb_midref(acb_realref(zmid)), arb_midref(acb_realref(z)));
|
|
arf_set(arb_midref(acb_imagref(zmid)), arb_midref(acb_imagref(z)));
|
|
|
|
if (more_imaginary)
|
|
acb_hypgeom_erf_1f1a(res, zmid, wp);
|
|
else
|
|
acb_hypgeom_erf_1f1b(res, zmid, wp);
|
|
|
|
arb_add_error_mag(acb_realref(res), re_err);
|
|
arb_add_error_mag(acb_imagref(res), im_err);
|
|
|
|
acb_clear(zmid);
|
|
mag_clear(re_err);
|
|
mag_clear(im_err);
|
|
}
|
|
|
|
acb_set_round(res, res, prec);
|
|
}
|
|
|
|
void
|
|
acb_hypgeom_erf(acb_t res, const acb_t z, slong prec)
|
|
{
|
|
double x, y, abs_z2, log_z, log_erf_z_asymp;
|
|
slong prec2, wp;
|
|
int more_imaginary;
|
|
|
|
if (!acb_is_finite(z))
|
|
{
|
|
acb_indeterminate(res);
|
|
return;
|
|
}
|
|
|
|
if (acb_is_zero(z))
|
|
{
|
|
acb_zero(res);
|
|
return;
|
|
}
|
|
|
|
if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), -64) < 0 &&
|
|
arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), -64) < 0))
|
|
{
|
|
acb_hypgeom_erf_1f1(res, z, prec, prec, 1);
|
|
return;
|
|
}
|
|
|
|
if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 64) > 0 ||
|
|
arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 64) > 0))
|
|
{
|
|
acb_hypgeom_erf_asymp(res, z, 0, prec, prec);
|
|
return;
|
|
}
|
|
|
|
x = arf_get_d(arb_midref(acb_realref(z)), ARF_RND_DOWN);
|
|
y = arf_get_d(arb_midref(acb_imagref(z)), ARF_RND_DOWN);
|
|
|
|
abs_z2 = x * x + y * y;
|
|
log_z = 0.5 * log(abs_z2);
|
|
/* estimate of log(erf(z)), disregarding csgn term */
|
|
log_erf_z_asymp = y*y - x*x - log_z;
|
|
|
|
if (log_z - abs_z2 < -(prec + 8) * 0.69314718055994530942)
|
|
{
|
|
/* If the asymptotic term is small, we can
|
|
compute with reduced precision. */
|
|
prec2 = FLINT_MIN(prec + 4 + log_erf_z_asymp * 1.4426950408889634074, (double) prec);
|
|
prec2 = FLINT_MAX(8, prec2);
|
|
prec2 = FLINT_MIN(prec2, prec);
|
|
|
|
acb_hypgeom_erf_asymp(res, z, 0, prec, prec2);
|
|
}
|
|
else
|
|
{
|
|
more_imaginary = arf_cmpabs(arb_midref(acb_imagref(z)),
|
|
arb_midref(acb_realref(z))) > 0;
|
|
|
|
/* Worst case: exp(|x|^2), computed: exp(x^2).
|
|
(x^2+y^2) - (x^2-y^2) = 2y^2, etc. */
|
|
if (more_imaginary)
|
|
wp = prec + FLINT_MAX(2 * x * x, 0.0) * 1.4426950408889634074 + 5;
|
|
else
|
|
wp = prec + FLINT_MAX(2 * y * y, 0.0) * 1.4426950408889634074 + 5;
|
|
|
|
acb_hypgeom_erf_1f1(res, z, prec, wp, more_imaginary);
|
|
}
|
|
}
|
|
|