arb/acb_poly/zeta_series.c
2015-11-05 17:51:23 +00:00

198 lines
5.4 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2014 Fredrik Johansson
******************************************************************************/
#include "acb_poly.h"
void
_acb_poly_zeta_cpx_series(acb_ptr z, const acb_t s, const acb_t a, int deflate, slong d, slong prec)
{
ulong M, N;
slong i;
mag_t bound;
arb_ptr vb;
int is_real, const_is_real;
if (d < 1)
return;
if (!acb_is_finite(s) || !acb_is_finite(a))
{
_acb_vec_indeterminate(z, d);
return;
}
is_real = const_is_real = 0;
if (acb_is_real(s) && acb_is_real(a))
{
if (arb_is_positive(acb_realref(a)))
{
is_real = const_is_real = 1;
}
else if (arb_is_int(acb_realref(a)) &&
arb_is_int(acb_realref(s)) &&
arb_is_nonpositive(acb_realref(s)))
{
const_is_real = 1;
}
}
mag_init(bound);
vb = _arb_vec_init(d);
_acb_poly_zeta_em_choose_param(bound, &N, &M, s, a, FLINT_MIN(d, 2), prec, MAG_BITS);
_acb_poly_zeta_em_bound(vb, s, a, N, M, d, MAG_BITS);
_acb_poly_zeta_em_sum(z, s, a, deflate, N, M, d, prec);
for (i = 0; i < d; i++)
{
arb_get_mag(bound, vb + i);
arb_add_error_mag(acb_realref(z + i), bound);
if (!is_real && !(i == 0 && const_is_real))
arb_add_error_mag(acb_imagref(z + i), bound);
}
mag_clear(bound);
_arb_vec_clear(vb, d);
}
void
_acb_poly_zeta_series(acb_ptr res, acb_srcptr h, slong hlen, const acb_t a, int deflate, slong len, slong prec)
{
slong i;
acb_ptr t, u;
hlen = FLINT_MIN(hlen, len);
t = _acb_vec_init(len);
u = _acb_vec_init(len);
/* use reflection formula */
if (arf_sgn(arb_midref(acb_realref(h))) < 0 && acb_is_one(a))
{
/* zeta(s) = (2*pi)**s * sin(pi*s/2) / pi * gamma(1-s) * zeta(1-s) */
acb_t pi;
acb_ptr f, s1, s2, s3, s4;
acb_init(pi);
f = _acb_vec_init(2);
s1 = _acb_vec_init(len);
s2 = _acb_vec_init(len);
s3 = _acb_vec_init(len);
s4 = _acb_vec_init(len);
acb_const_pi(pi, prec);
/* s1 = (2*pi)**s */
acb_mul_2exp_si(pi, pi, 1);
_acb_poly_pow_cpx(s1, pi, h, len, prec);
acb_mul_2exp_si(pi, pi, -1);
/* s2 = sin(pi*s/2) / pi */
acb_set(f, h);
acb_one(f + 1);
acb_mul_2exp_si(f, f, -1);
acb_mul_2exp_si(f + 1, f + 1, -1);
_acb_poly_sin_pi_series(s2, f, 2, len, prec);
_acb_vec_scalar_div(s2, s2, len, pi, prec);
/* s3 = gamma(1-s) */
acb_sub_ui(f, h, 1, prec);
acb_neg(f, f);
acb_set_si(f + 1, -1);
_acb_poly_gamma_series(s3, f, 2, len, prec);
/* s4 = zeta(1-s) */
acb_sub_ui(f, h, 1, prec);
acb_neg(f, f);
_acb_poly_zeta_cpx_series(s4, f, a, 0, len, prec);
for (i = 1; i < len; i += 2)
acb_neg(s4 + i, s4 + i);
_acb_poly_mullow(u, s1, len, s2, len, len, prec);
_acb_poly_mullow(s1, s3, len, s4, len, len, prec);
_acb_poly_mullow(t, u, len, s1, len, len, prec);
/* add 1/(1-(s+t)) = 1/(1-s) + t/(1-s)^2 + ... */
if (deflate)
{
acb_sub_ui(u, h, 1, prec);
acb_neg(u, u);
acb_inv(u, u, prec);
for (i = 1; i < len; i++)
acb_mul(u + i, u + i - 1, u, prec);
_acb_vec_add(t, t, u, len, prec);
}
acb_clear(pi);
_acb_vec_clear(f, 2);
_acb_vec_clear(s1, len);
_acb_vec_clear(s2, len);
_acb_vec_clear(s3, len);
_acb_vec_clear(s4, len);
}
else
{
_acb_poly_zeta_cpx_series(t, h, a, deflate, len, prec);
}
/* compose with nonconstant part */
acb_zero(u);
_acb_vec_set(u + 1, h + 1, hlen - 1);
_acb_poly_compose_series(res, t, len, u, hlen, len, prec);
_acb_vec_clear(t, len);
_acb_vec_clear(u, len);
}
void
acb_poly_zeta_series(acb_poly_t res, const acb_poly_t f, const acb_t a, int deflate, slong n, slong prec)
{
if (n == 0)
{
acb_poly_zero(res);
return;
}
acb_poly_fit_length(res, n);
if (f->length == 0)
{
acb_t t;
acb_init(t);
_acb_poly_zeta_series(res->coeffs, t, 1, a, deflate, n, prec);
acb_clear(t);
}
else
{
_acb_poly_zeta_series(res->coeffs, f->coeffs, f->length, a, deflate, n, prec);
}
_acb_poly_set_length(res, n);
_acb_poly_normalise(res);
}