arb/dlog/vec_sieve.c
2016-09-06 14:24:01 +02:00

142 lines
4.2 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2016 Pascal Molin
******************************************************************************/
#include "dlog.h"
static ulong
logp_sieve(log_pair_t * v, ulong nv, ulong p, ulong mod, ulong logm1, nmod_t order, int maxtry)
{
int i, j, nr = 0, nm = 0, ng = 0;
ulong l, pm, logm;
ulong u[2], r[2], t;
#if rnd
flint_rand_t state;
flint_randinit(state);
#endif
#if vbs
flint_printf("\nEnter logp_sieve p=%wu mod %wu...\n", p, mod);
#endif
while (1) {
/* find multiplier m */
logm = 0;
pm = l = p;
do {
nm++;
/* random ? pb when p lies in a small subgroup */
do {
nr++;
#if rnd
l = 1 + n_randint(state, p - 1);
#else
l = (l > 1) ? l - 1 : p - 1;
#endif
} while (v[l].m != l);
pm *= l;
logm += v[l].logm;
} while (pm < mod);
pm = pm % mod;
#if vbs
flint_printf("[pm=%wu, v[pm]=%ld]", pm, v[pm]);
#endif
/* half gcd u * pm + v * mod = r, ignore v */
u[0] = 0; r[0] = mod;
u[1] = 1; r[1] = pm;
i = 1; j = 0; /* flip flap */
do {
ng++;
#if vbs
flint_printf("[r=%d, v[r]=%d, u=%d, v[u]=%d]\n",
r[i],v[r[i]], u[i], v[u[i]]);
#endif
if (r[i] < nv && v[r[i]].m == r[i] && u[i] < nv && v[u[i]].m == u[i])
{
ulong x;
/* chi(-1)^j*chi(u)*chi(p)*chi(m)=chi(r) */
x = nmod_sub(v[r[i]].logm, nmod_add(v[u[i]].logm, logm, order), order);
if (j)
x = nmod_add(x, logm1, order);
#if rnd
flint_randclear(state);
#endif
return x;
}
j = i; i = 1 - i; /* switch */
t = r[i] / r[j];
r[i] = r[i] % r[j];
u[i] = u[i] + t * u[j]; /* (-1)^j */
} while (r[i] > 0 && u[i] < p);
if (nm > maxtry)
return NOT_FOUND;
}
}
void
dlog_vec_sieve(ulong *v, ulong nv, ulong a, ulong va, nmod_t mod, ulong na, nmod_t order)
{
int maxtry;
ulong k, p, p1, pmax, logm1;
log_pair_t * w;
dlog_precomp_t pre;
n_primes_t iter;
/* store size */
w = flint_malloc( nv * sizeof(log_pair_t));
for (k = 0; k < nv; k++)
{
w[k].m = 1;
w[k].logm = 1;
}
w[1].logm = 0;
/* discrete log on first primes, then sieve */
pmax = (nv < mod.n) ? nv : mod.n;
p1 = maxtry = 50; /* FIXME: tune this limit! */
dlog_precomp_n_init(pre, a, mod.n, na, p1);
logm1 = (mod.n % 2) ? 0 : dlog_precomp(pre, mod.n - 1);
n_primes_init(iter);
while ((p = n_primes_next(iter)) < pmax)
{
ulong m, wp;
if (mod.n % p == 0) /* FIXME: those primes could be known... */
continue; /* won't be attained another time */
if (p < p1 || (wp = logp_sieve(w, nv, p, mod.n, logm1, order, maxtry)) != NOT_FOUND)
wp = nmod_mul(dlog_precomp(pre, p), va, order);
for (k = p, m = 1; k < nv; k += p, m++)
{
w[k].m *= p;
w[k].logm = nmod_add(w[k].logm, wp, order);
}
}
/* write in v */
for (k = 0; k < nv; k++)
if (v[k] != NOT_FOUND)
v[k] = nmod_add(v[k], w[k].logm, order);
n_primes_clear(iter);
flint_free(w);
}