mirror of
https://github.com/vale981/arb
synced 2025-03-09 03:56:41 -04:00

- try to handle even and odd components the same way in the dirichlet group - switch from phi_q_odd to smaller expo = exponent of the group all character orders divide this number, and a character of that order exists - use conrey logarithm to reuse log and to loop efficiently over the group (see the diff on l.c, only 1 log in computed instead of 2 * q) - NOT TESTED, for the moment it just compiles, I know some errors (e.g. the FIXME in group_init.c : the generators have to be lifted mod q) this commit is just a proof of concept.
102 lines
2.4 KiB
C
102 lines
2.4 KiB
C
/*
|
|
Copyright (C) 2015 Jonathan Bober
|
|
Copyright (C) 2016 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_dirichlet.h"
|
|
|
|
static ulong
|
|
primitive_root_p_and_p2(ulong p)
|
|
{
|
|
if (p == 40487)
|
|
return 10;
|
|
|
|
#if FLINT_BITS == 64
|
|
if (p == UWORD(6692367337))
|
|
return 7;
|
|
|
|
if (p > UWORD(1000000000000))
|
|
{
|
|
printf("primitive root: p > 10^12 not implemented");
|
|
abort();
|
|
}
|
|
#endif
|
|
|
|
return n_primitive_root_prime(p);
|
|
}
|
|
|
|
void
|
|
acb_dirichlet_group_init(acb_dirichlet_group_t G, ulong q)
|
|
{
|
|
slong k;
|
|
ulong e2 = 0;
|
|
n_factor_t fac;
|
|
|
|
G->q = q;
|
|
G->q_odd = q;
|
|
G->q_even = 1;
|
|
|
|
while (G->q_odd % 2 == 0)
|
|
{
|
|
G->q_odd /= 2;
|
|
G->q_even *= 2;
|
|
e2++;
|
|
}
|
|
|
|
n_factor_init(&fac);
|
|
n_factor(&fac, G->q_odd, 1);
|
|
|
|
/* number of components at p=2 */
|
|
G->neven = (e2 >= 3) ? 2 : (e2 == 2) ? 1 : 0;
|
|
G->num = G->neven + fac.num;
|
|
G->primes = flint_malloc(G->num * sizeof(ulong));
|
|
G->exponents = flint_malloc(G->num * sizeof(ulong));
|
|
G->generators = flint_malloc(G->num * sizeof(ulong));
|
|
G->phi = flint_malloc(G->num * sizeof(ulong));
|
|
G->PHI = flint_malloc(G->num * sizeof(ulong));
|
|
|
|
/* even part */
|
|
if (G->q_even <= 2)
|
|
{
|
|
G->expo = G->phi_q = 1;
|
|
}
|
|
else
|
|
{
|
|
G->phi_q = G->q_even / 2;
|
|
G->expo = G->phi_q / 2;
|
|
}
|
|
|
|
for (k = 0; k < G->neven; k++)
|
|
{
|
|
G->primes[k] = 2;
|
|
G->exponents[k] = (k==0) ? 1 : e2-2;
|
|
G->generators[k] = (k==0) ? -1 : 5;
|
|
G->phi[k] = (k==0) ? 1 : G->expo;
|
|
}
|
|
|
|
for (k = G->neven; k < G->num; k++)
|
|
{
|
|
ulong phik, p1;
|
|
G->primes[k] = fac.p[k - G->neven];
|
|
G->exponents[k] = fac.exp[k - G->neven];
|
|
G->generators[k] = primitive_root_p_and_p2(G->primes[k]);
|
|
p1 = G->primes[k] - 1;
|
|
phik = p1 * n_pow(G->primes[k], G->exponents[k]-1);
|
|
G->expo *= phik / n_gcd(G->expo, p1);
|
|
G->phi_q *= phik;
|
|
G->phi[k] = phik;
|
|
}
|
|
|
|
for (k = 0; k < G->num; k++)
|
|
{
|
|
G->PHI[k] = G->expo / G->phi[k];
|
|
/* FIXME: generators[k] should be lifted mod q! */
|
|
}
|
|
}
|