arb/zeta/series_em_sum.c

168 lines
5.1 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012 Fredrik Johansson
******************************************************************************/
#include "zeta.h"
#include "fmpcb.h"
#include "fmpcb_poly.h"
#include "bernoulli.h"
/* res = src * (c + x) */
void _fmpcb_poly_mullow_cpx(fmpcb_ptr res, fmpcb_srcptr src, long len, const fmpcb_t c, long trunc, long prec)
{
long i;
if (len < trunc)
fmpcb_set(res + len, src + len - 1);
for (i = len - 1; i > 0; i--)
{
fmpcb_mul(res + i, src + i, c, prec);
fmpcb_add(res + i, res + i, src + i - 1, prec);
}
fmpcb_mul(res, src, c, prec);
}
void _fmpcb_poly_fmpcb_invpow_cpx(fmpcb_ptr res, const fmpcb_t N, const fmpcb_t c, long trunc, long prec)
{
long i;
fmpcb_t logN;
fmpcb_init(logN);
fmpcb_log(logN, N, prec);
fmpcb_mul(res + 0, logN, c, prec);
fmpcb_neg(res + 0, res + 0);
fmpcb_exp(res + 0, res + 0, prec);
for (i = 1; i < trunc; i++)
{
fmpcb_mul(res + i, res + i - 1, logN, prec);
fmpcb_div_si(res + i, res + i, -i, prec);
}
fmpcb_clear(logN);
}
void
zeta_series_em_sum(fmpcb_ptr z, const fmpcb_t s, const fmpcb_t a, int deflate, ulong N, ulong M, long d, long prec)
{
fmpcb_ptr t, u, v, term, sum;
fmpcb_t Na;
long i;
t = _fmpcb_vec_init(d + 1);
u = _fmpcb_vec_init(d);
v = _fmpcb_vec_init(d);
term = _fmpcb_vec_init(d);
sum = _fmpcb_vec_init(d);
fmpcb_init(Na);
prec += 2 * (FLINT_BIT_COUNT(N) + FLINT_BIT_COUNT(d));
/* sum 1/(k+a)^(s+x) */
if (fmpcb_is_one(a) && d <= 3)
{
zeta_powsum_one_series_sieved(sum, s, N, d, prec);
}
else if (N > 50 && flint_get_num_threads() > 1)
{
zeta_powsum_series_naive_threaded(sum, s, a, N, d, prec);
}
else
{
zeta_powsum_series_naive(sum, s, a, N, d, prec);
}
/* t = 1/(N+a)^(s+x); we might need one extra term for deflation */
fmpcb_add_ui(Na, a, N, prec);
_fmpcb_poly_fmpcb_invpow_cpx(t, Na, s, d + 1, prec);
/* sum += (N+a) * 1/((s+x)-1) * t */
if (!deflate)
{
/* u = 1/(s+x) has series [1/(s-1), -1/(s-1)^2, 1/(s-1)^3, ...] */
fmpcb_sub_ui(u + 0, s, 1, prec);
fmpcb_inv(u + 0, u + 0, prec);
for (i = 1; i < d; i++)
fmpcb_mul(u + i, u + i - 1, u + 0, prec);
for (i = 1; i < d; i += 2)
fmpcb_neg(u + i, u + i);
_fmpcb_poly_mullow(v, u, d, t, d, d, prec);
_fmpcb_vec_scalar_mul(v, v, d, Na, prec);
_fmpcb_vec_add(sum, sum, v, d, prec);
}
/* sum += ((N+a)^(1-(s+x)) - 1) / ((s+x) - 1) */
else
{
/* at s = 1, this becomes (N*t - 1)/x, i.e. just remove one coeff */
if (fmpcb_is_one(s))
{
for (i = 0; i < d; i++)
fmpcb_mul(u + i, t + i + 1, Na, prec);
_fmpcb_vec_add(sum, sum, u, d, prec);
}
else
{
/* TODO: this is numerically unstable for large derivatives,
and divides by zero if s contains 1. We want a good
way to evaluate the power series ((N+a)^y - 1) / y where y has
nonzero constant term, without doing a division.
How is this best done? */
_fmpcb_vec_scalar_mul(t, t, d, Na, prec);
fmpcb_sub_ui(t + 0, t + 0, 1, prec);
fmpcb_sub_ui(u + 0, s, 1, prec);
fmpcb_inv(u + 0, u + 0, prec);
for (i = 1; i < d; i++)
fmpcb_mul(u + i, u + i - 1, u + 0, prec);
for (i = 1; i < d; i += 2)
fmpcb_neg(u + i, u + i);
_fmpcb_poly_mullow(v, u, d, t, d, d, prec);
_fmpcb_vec_add(sum, sum, v, d, prec);
_fmpcb_poly_fmpcb_invpow_cpx(t, Na, s, d, prec);
}
}
/* sum += u = 1/2 * t */
_fmpcb_vec_scalar_mul_2exp_si(u, t, d, -1L);
_fmpcb_vec_add(sum, sum, u, d, prec);
/* Euler-Maclaurin formula tail */
if (d < 5 || d < M / 10)
zeta_em_tail_naive(u, s, Na, t, M, d, prec);
else
zeta_em_tail_bsplit(u, s, Na, t, M, d, prec);
_fmpcb_vec_add(z, sum, u, d, prec);
_fmpcb_vec_clear(t, d + 1);
_fmpcb_vec_clear(u, d);
_fmpcb_vec_clear(v, d);
_fmpcb_vec_clear(term, d);
_fmpcb_vec_clear(sum, d);
fmpcb_clear(Na);
}