arb/fmpcb_poly/revert_series_newton.c
2013-07-27 11:37:26 +02:00

131 lines
3.5 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2013 Fredrik Johansson
******************************************************************************/
#include "fmpcb_poly.h"
#define CUTOFF 5
void
_fmpcb_poly_revert_series_newton(fmpcb_ptr Qinv, fmpcb_srcptr Q, long n, long prec)
{
long i, k, a[FLINT_BITS];
fmpcb_ptr T, U, V;
if (n <= 2)
{
if (n >= 1)
fmpcb_zero(Qinv);
if (n == 2)
fmpcb_inv(Qinv + 1, Q + 1, prec);
return;
}
T = _fmpcb_vec_init(n);
U = _fmpcb_vec_init(n);
V = _fmpcb_vec_init(n);
k = n;
for (i = 1; (1L << i) < k; i++);
a[i = 0] = k;
while (k >= CUTOFF)
a[++i] = (k = (k + 1) / 2);
_fmpcb_poly_revert_series_lagrange(Qinv, Q, k, prec);
_fmpcb_vec_zero(Qinv + k, n - k);
for (i--; i >= 0; i--)
{
k = a[i];
_fmpcb_poly_compose_series(T, Q, k, Qinv, k, k, prec);
_fmpcb_poly_derivative(U, T, k, prec); fmpcb_zero(U + k - 1);
fmpcb_zero(T + 1);
_fmpcb_poly_div_series(V, T, k, U, k, k, prec);
_fmpcb_poly_derivative(T, Qinv, k, prec);
_fmpcb_poly_mullow(U, V, k, T, k, k, prec);
_fmpcb_vec_sub(Qinv, Qinv, U, k, prec);
}
_fmpcb_vec_clear(T, n);
_fmpcb_vec_clear(U, n);
_fmpcb_vec_clear(V, n);
}
void
fmpcb_poly_revert_series_newton(fmpcb_poly_t Qinv,
const fmpcb_poly_t Q, long n, long prec)
{
fmpcb_ptr Qcopy;
int Qalloc;
long Qlen = Q->length;
if (Q->length < 2 || !fmpcb_is_zero(Q->coeffs)
|| fmpcb_contains_zero(Q->coeffs + 1))
{
printf("Exception (fmpcb_poly_revert_series_newton). Input must \n"
"have zero constant term and nonzero coefficient of x^1.\n");
abort();
}
if (n < 2)
{
fmpcb_poly_zero(Qinv);
return;
}
if (Qlen >= n)
{
Qcopy = Q->coeffs;
Qalloc = 0;
}
else
{
long i;
Qcopy = _fmpcb_vec_init(n);
for (i = 0; i < Qlen; i++)
Qcopy[i] = Q->coeffs[i];
Qalloc = 1;
}
if (Qinv != Q)
{
fmpcb_poly_fit_length(Qinv, n);
_fmpcb_poly_revert_series_newton(Qinv->coeffs, Qcopy, n, prec);
}
else
{
fmpcb_poly_t t;
fmpcb_poly_init2(t, n);
_fmpcb_poly_revert_series_newton(t->coeffs, Qcopy, n, prec);
fmpcb_poly_swap(Qinv, t);
fmpcb_poly_clear(t);
}
_fmpcb_poly_set_length(Qinv, n);
_fmpcb_poly_normalise(Qinv);
if (Qalloc)
flint_free(Qcopy);
}