mirror of
https://github.com/vale981/arb
synced 2025-03-06 09:51:39 -05:00
217 lines
6.1 KiB
C
217 lines
6.1 KiB
C
/*=============================================================================
|
|
|
|
This file is part of ARB.
|
|
|
|
ARB is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
ARB is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with ARB; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2016 Pascal Molin
|
|
|
|
******************************************************************************/
|
|
|
|
#include "math.h"
|
|
#include "dlog.h"
|
|
#define NOT_FOUND UWORD_MAX
|
|
|
|
/* vector of log(k,a)*loga % order in Z/modZ */
|
|
void
|
|
dlog_vec_loop(ulong * v, ulong nv, ulong a, ulong va, const nmod_t mod, ulong na, const nmod_t order)
|
|
{
|
|
ulong x, xp;
|
|
long vx = 0;
|
|
for(x = a; x != 1; x = nmod_mul(x, a, mod))
|
|
{
|
|
vx = nmod_add(vx, va, order);
|
|
for(xp = x; xp < nv; xp+=mod.n)
|
|
v[xp] = nmod_add(v[xp], vx, order);
|
|
}
|
|
}
|
|
|
|
static ulong
|
|
logp_sieve(ulong * v, ulong nv, ulong p, ulong mod, ulong logm1, const nmod_t order, int maxtry)
|
|
{
|
|
int i, j, nr = 0, nm = 0, ng = 0;
|
|
ulong l, pm, logm;
|
|
ulong u[2], r[2], t;
|
|
#if rnd
|
|
flint_rand_t state;
|
|
flint_randinit(state);
|
|
#endif
|
|
#if vbs
|
|
flint_printf("\nEnter logp_sieve p=%wu mod %wu...\n", p, mod);
|
|
#endif
|
|
while (1) {
|
|
/* find multiplier m */
|
|
logm = 0;
|
|
pm = l = p;
|
|
do {
|
|
nm++;
|
|
/* random ? pb when p lies in a small subgroup */
|
|
do {
|
|
nr++;
|
|
#if rnd
|
|
l = 1 + n_randint(state, p - 1);
|
|
#else
|
|
l = (l > 1) ? l - 1 : p - 1;
|
|
#endif
|
|
} while (v[l] == NOT_FOUND);
|
|
pm *= l;
|
|
logm += v[l];
|
|
} while (pm < mod);
|
|
pm = pm % mod;
|
|
#if vbs
|
|
flint_printf("[pm=%wu, v[pm]=%ld]", pm, v[pm]);
|
|
#endif
|
|
/* half gcd u * pm + v * mod = r, ignore v */
|
|
u[0] = 0; r[0] = mod;
|
|
u[1] = 1; r[1] = pm;
|
|
i = 1; j = 0; /* flip flap */
|
|
do {
|
|
ng++;
|
|
#if vbs
|
|
flint_printf("[r=%d, v[r]=%d, u=%d, v[u]=%d]\n",
|
|
r[i],v[r[i]], u[i], v[u[i]]);
|
|
#endif
|
|
if (r[i] < nv && v[r[i]] != NOT_FOUND && u[i] < nv && v[u[i]] != NOT_FOUND)
|
|
{
|
|
ulong x;
|
|
/* chi(-1)^j*chi(u)*chi(p)*chi(m)=chi(r) */
|
|
x = nmod_sub(v[r[i]], nmod_add(v[u[i]], logm, order), order);
|
|
if (j)
|
|
x = nmod_add(x, logm1, order);
|
|
#if rnd
|
|
flint_randclear(state);
|
|
#endif
|
|
return x;
|
|
}
|
|
|
|
j = i; i = 1 - i; /* switch */
|
|
t = r[i] / r[j];
|
|
r[i] = r[i] % r[j];
|
|
u[i] = u[i] + t * u[j]; /* (-1)^j */
|
|
|
|
} while (r[i] > 0 && u[i] < p);
|
|
if (nm > maxtry)
|
|
return NOT_FOUND;
|
|
}
|
|
}
|
|
|
|
void
|
|
dlog_vec_sieve(ulong *v, ulong nv, ulong a, ulong va, const nmod_t mod, ulong na, const nmod_t order)
|
|
{
|
|
int maxtry;
|
|
ulong k, p, p1, pmax, logm1;
|
|
ulong * w;
|
|
dlog_precomp_t pre;
|
|
n_primes_t iter;
|
|
|
|
w = flint_malloc( nv * sizeof(ulong));
|
|
for (k = 0; k < nv; k++)
|
|
w[k] = NOT_FOUND;
|
|
w[1] = 0;
|
|
|
|
/* discrete log on first primes, then sieve */
|
|
pmax = (nv < mod.n) ? nv : mod.n;
|
|
p1 = maxtry = 50; /* FIXME: tune this limit! */
|
|
dlog_precomp_n_init(pre, a, mod.n, na, p1);
|
|
|
|
logm1 = (mod.n % 2) ? 0 : dlog_precomp(pre, mod.n - 1);
|
|
|
|
n_primes_init(iter);
|
|
while ((p = n_primes_next(iter)) < pmax)
|
|
{
|
|
ulong m, wp;
|
|
if (mod.n % p == 0) /* FIXME: those primes could be known... */
|
|
continue; /* won't be attained another time */
|
|
if (p < p1 || (wp = logp_sieve(w, nv, p, mod.n, logm1, order, maxtry)) != NOT_FOUND)
|
|
wp = nmod_mul(dlog_precomp(pre, p), va, order);
|
|
for (k = p, m = 1; k < nv; k += p, m++)
|
|
w[k] = nmod_add(w[m], wp, order);
|
|
}
|
|
for (k = 0; k < nv; k++)
|
|
if (v[k] != NOT_FOUND)
|
|
v[k] = nmod_add(v[k], w[k], order);
|
|
n_primes_clear(iter);
|
|
flint_free(w);
|
|
}
|
|
|
|
/* group components up to bound and return cofactor */
|
|
#define LOOP 0
|
|
#define SIEVE 1
|
|
static void
|
|
n_factor_group(n_factor_t * fac, ulong bound)
|
|
{
|
|
int i, j, k;
|
|
ulong m[FLINT_MAX_FACTORS_IN_LIMB];
|
|
ulong c = 1;
|
|
i = 0;
|
|
for (k = fac->num - 1; k >= 0; k--)
|
|
{
|
|
ulong qe = n_pow(fac->p[k], fac->exp[k]);
|
|
if (qe > bound)
|
|
c *= qe;
|
|
else
|
|
{
|
|
/* try to insert somewhere in m */
|
|
for (j = 0; j < i && (m[j] * qe > bound); j++);
|
|
if (j == i)
|
|
m[i++] = qe;
|
|
else
|
|
m[j] *= qe;
|
|
}
|
|
}
|
|
for (j = 0; j < i; j++)
|
|
{
|
|
fac->p[j] = m[j];
|
|
fac->exp[j] = LOOP;
|
|
}
|
|
if (c > 1)
|
|
{
|
|
fac->p[i] = c;
|
|
fac->exp[i] = SIEVE;
|
|
i++;
|
|
}
|
|
fac->num = i;
|
|
}
|
|
|
|
/* assume v[k] = -1 for bad primes? */
|
|
/* loop on small components and keep one subgroup for DLOG + sieve */
|
|
void
|
|
dlog_vec_crt(ulong *v, ulong nv, ulong a, ulong va, nmod_t mod, ulong na, nmod_t order)
|
|
{
|
|
n_factor_t fac;
|
|
ulong maxloop;
|
|
int k;
|
|
|
|
maxloop = 3 * nv; /* FIXME: tune this */
|
|
n_factor_init(&fac);
|
|
n_factor(&fac, na, 1);
|
|
n_factor_group(&fac, maxloop);
|
|
for (k = 0; k < fac.num; k++)
|
|
{
|
|
ulong m, M, aM, uM, vaM;
|
|
m = fac.p[k];
|
|
M = na / m;
|
|
aM = nmod_pow_ui(a, M, mod);
|
|
uM = M * n_invmod(M % m, m); /* uM < n */
|
|
vaM = nmod_mul(va, uM % order.n, order);
|
|
if (fac.exp[k] == LOOP)
|
|
dlog_vec_loop(v, nv, aM, vaM, mod, m, order);
|
|
else
|
|
dlog_vec_sieve(v, nv, aM, vaM, mod, m, order);
|
|
}
|
|
}
|