arb/dlog/vec.c

217 lines
6.1 KiB
C

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2016 Pascal Molin
******************************************************************************/
#include "math.h"
#include "dlog.h"
#define NOT_FOUND UWORD_MAX
/* vector of log(k,a)*loga % order in Z/modZ */
void
dlog_vec_loop(ulong * v, ulong nv, ulong a, ulong va, const nmod_t mod, ulong na, const nmod_t order)
{
ulong x, xp;
long vx = 0;
for(x = a; x != 1; x = nmod_mul(x, a, mod))
{
vx = nmod_add(vx, va, order);
for(xp = x; xp < nv; xp+=mod.n)
v[xp] = nmod_add(v[xp], vx, order);
}
}
static ulong
logp_sieve(ulong * v, ulong nv, ulong p, ulong mod, ulong logm1, const nmod_t order, int maxtry)
{
int i, j, nr = 0, nm = 0, ng = 0;
ulong l, pm, logm;
ulong u[2], r[2], t;
#if rnd
flint_rand_t state;
flint_randinit(state);
#endif
#if vbs
flint_printf("\nEnter logp_sieve p=%wu mod %wu...\n", p, mod);
#endif
while (1) {
/* find multiplier m */
logm = 0;
pm = l = p;
do {
nm++;
/* random ? pb when p lies in a small subgroup */
do {
nr++;
#if rnd
l = 1 + n_randint(state, p - 1);
#else
l = (l > 1) ? l - 1 : p - 1;
#endif
} while (v[l] == NOT_FOUND);
pm *= l;
logm += v[l];
} while (pm < mod);
pm = pm % mod;
#if vbs
flint_printf("[pm=%wu, v[pm]=%ld]", pm, v[pm]);
#endif
/* half gcd u * pm + v * mod = r, ignore v */
u[0] = 0; r[0] = mod;
u[1] = 1; r[1] = pm;
i = 1; j = 0; /* flip flap */
do {
ng++;
#if vbs
flint_printf("[r=%d, v[r]=%d, u=%d, v[u]=%d]\n",
r[i],v[r[i]], u[i], v[u[i]]);
#endif
if (r[i] < nv && v[r[i]] != NOT_FOUND && u[i] < nv && v[u[i]] != NOT_FOUND)
{
ulong x;
/* chi(-1)^j*chi(u)*chi(p)*chi(m)=chi(r) */
x = nmod_sub(v[r[i]], nmod_add(v[u[i]], logm, order), order);
if (j)
x = nmod_add(x, logm1, order);
#if rnd
flint_randclear(state);
#endif
return x;
}
j = i; i = 1 - i; /* switch */
t = r[i] / r[j];
r[i] = r[i] % r[j];
u[i] = u[i] + t * u[j]; /* (-1)^j */
} while (r[i] > 0 && u[i] < p);
if (nm > maxtry)
return NOT_FOUND;
}
}
void
dlog_vec_sieve(ulong *v, ulong nv, ulong a, ulong va, const nmod_t mod, ulong na, const nmod_t order)
{
int maxtry;
ulong k, p, p1, pmax, logm1;
ulong * w;
dlog_precomp_t pre;
n_primes_t iter;
w = flint_malloc( nv * sizeof(ulong));
for (k = 0; k < nv; k++)
w[k] = NOT_FOUND;
w[1] = 0;
/* discrete log on first primes, then sieve */
pmax = (nv < mod.n) ? nv : mod.n;
p1 = maxtry = 50; /* FIXME: tune this limit! */
dlog_precomp_n_init(pre, a, mod.n, na, p1);
logm1 = (mod.n % 2) ? 0 : dlog_precomp(pre, mod.n - 1);
n_primes_init(iter);
while ((p = n_primes_next(iter)) < pmax)
{
ulong m, wp;
if (mod.n % p == 0) /* FIXME: those primes could be known... */
continue; /* won't be attained another time */
if (p < p1 || (wp = logp_sieve(w, nv, p, mod.n, logm1, order, maxtry)) != NOT_FOUND)
wp = nmod_mul(dlog_precomp(pre, p), va, order);
for (k = p, m = 1; k < nv; k += p, m++)
w[k] = nmod_add(w[m], wp, order);
}
for (k = 0; k < nv; k++)
if (v[k] != NOT_FOUND)
v[k] = nmod_add(v[k], w[k], order);
n_primes_clear(iter);
flint_free(w);
}
/* group components up to bound and return cofactor */
#define LOOP 0
#define SIEVE 1
static void
n_factor_group(n_factor_t * fac, ulong bound)
{
int i, j, k;
ulong m[FLINT_MAX_FACTORS_IN_LIMB];
ulong c = 1;
i = 0;
for (k = fac->num - 1; k >= 0; k--)
{
ulong qe = n_pow(fac->p[k], fac->exp[k]);
if (qe > bound)
c *= qe;
else
{
/* try to insert somewhere in m */
for (j = 0; j < i && (m[j] * qe > bound); j++);
if (j == i)
m[i++] = qe;
else
m[j] *= qe;
}
}
for (j = 0; j < i; j++)
{
fac->p[j] = m[j];
fac->exp[j] = LOOP;
}
if (c > 1)
{
fac->p[i] = c;
fac->exp[i] = SIEVE;
i++;
}
fac->num = i;
}
/* assume v[k] = -1 for bad primes? */
/* loop on small components and keep one subgroup for DLOG + sieve */
void
dlog_vec_crt(ulong *v, ulong nv, ulong a, ulong va, nmod_t mod, ulong na, nmod_t order)
{
n_factor_t fac;
ulong maxloop;
int k;
maxloop = 3 * nv; /* FIXME: tune this */
n_factor_init(&fac);
n_factor(&fac, na, 1);
n_factor_group(&fac, maxloop);
for (k = 0; k < fac.num; k++)
{
ulong m, M, aM, uM, vaM;
m = fac.p[k];
M = na / m;
aM = nmod_pow_ui(a, M, mod);
uM = M * n_invmod(M % m, m); /* uM < n */
vaM = nmod_mul(va, uM % order.n, order);
if (fac.exp[k] == LOOP)
dlog_vec_loop(v, nv, aM, vaM, mod, m, order);
else
dlog_vec_sieve(v, nv, aM, vaM, mod, m, order);
}
}