arb/acb/test/t-agm1.c
2016-04-26 17:20:05 +02:00

187 lines
6.8 KiB
C

/*
Copyright (C) 2014 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb.h"
#define EPS 1e-13
#define NUM_DERIVS 4
#define NUM_TESTS 11
const double agm_testdata[NUM_TESTS][10] = {
{1.0, 0.0, 1.0, 0.0, 0.5, 0.0, -0.0625, 0.0, 0.03125, 0.0},
{0.25, 0.0, 0.56075714507190064253, 0.0, 0.76633907325304843764, 0.0,
-0.58010113691169132987, 0.0, 1.2991960360521313649, 0.0},
{1.0, 1.0, 1.0491605287327802205, 0.47815574608816122933,
0.44643105633549979073, -0.08043578677710866283,
-0.015455284495904882924, 0.031976374729700173479,
-0.005073437378084728324, -0.010673958729796444985},
{0.0, 1.0, 0.59907011736779610372, 0.59907011736779610372,
0.43640657965245804105, -0.16266353771533806267,
0.031271486774469549792, 0.031271486774469549792,
-0.0084910439043492636266, 0.022780442870120286166},
{-1.0, 1.0, 0.18841106798868002055, 0.77800407878895828015,
0.39320630832295102335, -0.19287323123455182026,
0.016808115488846724979, 0.020163502567351546742,
-0.011189063384352573532, -0.0045629824424054816356},
{-0.25, 0.0, 0.24392673474953340413, 0.27799893427725564501,
0.079794586546549867566, -0.32574453868033984617,
-0.27530931370867131683, -0.60287933825809104112,
-0.54714813521966247214, -0.97291617788393560861},
{-2.0, 0.0, -0.42296620840880168736, 0.66126618346180476447,
0.29655367830470777795, -0.27314834694816402295,
0.018331225229748304014, -0.043277191398267359935,
0.0094104572902577354423, -0.021071819981331905571},
{-0.99999994039535522461, 0.0, 0.0069953999943208591971,
0.08334545077423930704, 12454.444757282471906, 73670.447089584396744,
-87884330303.90316493, -553342797575.05204396, 909784741818095264.43,
5883796037072491540.4},
{-1.0000000596046447754, 0.0, -0.0069954003670321135601,
0.083345455480285282001, 12454.451634795395449, -73670.529975671147878,
87884324285.574775284, -553342761339.97964199, 909784713383817144.98,
-5883795855289758433.3},
{-1.0, 5.9604644775390625e-8, 2.3677293150757997928e-9,
0.083932595219022127005, 75242.17179390509748, -0.041726661532440829443,
-18488.306894081923308, 563725525035.34898339, -5988414396610684162.5,
-92537341636.835656296},
{-1.0, -5.9604644775390625e-8, 2.3677293150757997928e-9,
-0.083932595219022127005, 75242.17179390509748, 0.041726661532440829443,
-18488.306894081923308, -563725525035.34898339, -5988414396610684162.5,
92537341636.835656296},
};
int main()
{
slong iter;
flint_rand_t state;
flint_printf("agm1....");
fflush(stdout);
flint_randinit(state);
/* check particular values against table */
{
acb_t z, t;
acb_ptr w1;
slong i, j, prec, cnj;
acb_init(z);
acb_init(t);
w1 = _acb_vec_init(NUM_DERIVS);
for (prec = 32; prec <= 512; prec *= 4)
{
for (i = 0; i < NUM_TESTS; i++)
{
for (cnj = 0; cnj < 2; cnj++)
{
if (cnj == 1 && agm_testdata[i][0] < 0 &&
agm_testdata[i][1] == 0)
continue;
acb_zero(z);
arf_set_d(arb_midref(acb_realref(z)), agm_testdata[i][0]);
arf_set_d(arb_midref(acb_imagref(z)), cnj ? -agm_testdata[i][1] : agm_testdata[i][1]);
acb_agm1_cpx(w1, z, NUM_DERIVS, prec);
for (j = 0; j < NUM_DERIVS; j++)
{
arf_set_d(arb_midref(acb_realref(t)), agm_testdata[i][2+2*j]);
mag_set_d(arb_radref(acb_realref(t)), fabs(agm_testdata[i][2+2*j]) * EPS);
arf_set_d(arb_midref(acb_imagref(t)), cnj ? -agm_testdata[i][2+2*j+1] : agm_testdata[i][2+2*j+1]);
mag_set_d(arb_radref(acb_imagref(t)), fabs(agm_testdata[i][2+2*j+1]) * EPS);
if (!acb_overlaps(w1 + j, t))
{
flint_printf("FAIL\n\n");
flint_printf("j = %wd\n\n", j);
flint_printf("z = "); acb_printd(z, 15); flint_printf("\n\n");
flint_printf("t = "); acb_printd(t, 15); flint_printf("\n\n");
flint_printf("w1 = "); acb_printd(w1 + j, 15); flint_printf("\n\n");
abort();
}
}
}
}
}
_acb_vec_clear(w1, NUM_DERIVS);
acb_clear(z);
acb_clear(t);
}
/* self-consistency test */
for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++)
{
acb_ptr m1, m2;
acb_t z1, z2, t;
slong i, len1, len2, prec1, prec2;
len1 = n_randint(state, 10);
len2 = n_randint(state, 10);
prec1 = 2 + n_randint(state, 2000);
prec2 = 2 + n_randint(state, 2000);
m1 = _acb_vec_init(len1);
m2 = _acb_vec_init(len2);
acb_init(z1);
acb_init(z2);
acb_init(t);
acb_randtest(z1, state, prec1, 1 + n_randint(state, 100));
if (n_randint(state, 2))
{
acb_set(z2, z1);
}
else
{
acb_randtest(t, state, prec2, 1 + n_randint(state, 100));
acb_add(z2, z1, t, prec2);
acb_sub(z2, z2, t, prec2);
}
acb_agm1_cpx(m1, z1, len1, prec1);
acb_agm1_cpx(m2, z2, len2, prec2);
for (i = 0; i < FLINT_MIN(len1, len2); i++)
{
if (!acb_overlaps(m1 + i, m2 + i))
{
flint_printf("FAIL (overlap)\n\n");
flint_printf("iter = %wd, i = %wd, len1 = %wd, len2 = %wd, prec1 = %wd, prec2 = %wd\n\n",
iter, i, len1, len2, prec1, prec2);
flint_printf("z1 = "); acb_printd(z1, 30); flint_printf("\n\n");
flint_printf("z2 = "); acb_printd(z2, 30); flint_printf("\n\n");
flint_printf("m1 = "); acb_printd(m1, 30); flint_printf("\n\n");
flint_printf("m2 = "); acb_printd(m2, 30); flint_printf("\n\n");
abort();
}
}
_acb_vec_clear(m1, len1);
_acb_vec_clear(m2, len2);
acb_clear(z1);
acb_clear(z2);
acb_clear(t);
}
flint_randclear(state);
flint_cleanup();
flint_printf("PASS\n");
return EXIT_SUCCESS;
}