arb/acb_poly/lgamma_series.c
2021-09-29 19:55:34 +02:00

153 lines
4.2 KiB
C

/*
Copyright (C) 2013 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_poly.h"
#include "acb_hypgeom.h"
void
_acb_log_rising_correct_branch(acb_t t,
const acb_t t_wrong, const acb_t z, ulong r, slong prec);
void acb_hypgeom_gamma_stirling_choose_param(int * reflect, slong * r, slong * n,
const acb_t x, int use_reflect, int digamma, slong prec);
void
_acb_poly_gamma_stirling_eval(acb_ptr res, const acb_t z, slong n, slong num, slong prec);
void
_acb_poly_lgamma_series(acb_ptr res, acb_srcptr h, slong hlen, slong len, slong prec)
{
int reflect;
slong i, r, n, wp;
acb_t zr;
acb_ptr t, u;
hlen = FLINT_MIN(hlen, len);
if (hlen == 1)
{
acb_lgamma(res, h, prec);
if (acb_is_finite(res))
_acb_vec_zero(res + 1, len - 1);
else
_acb_vec_indeterminate(res + 1, len - 1);
return;
}
if (len == 2)
{
acb_t v;
acb_init(v);
acb_set(v, h + 1);
acb_digamma(res + 1, h, prec);
acb_lgamma(res, h, prec);
acb_mul(res + 1, res + 1, v, prec);
acb_clear(v);
return;
}
/* use real code for real input and output */
if (_acb_vec_is_real(h, hlen) && arb_is_positive(acb_realref(h)))
{
arb_ptr tmp = _arb_vec_init(len);
for (i = 0; i < hlen; i++)
arb_set(tmp + i, acb_realref(h + i));
_arb_poly_lgamma_series(tmp, tmp, hlen, len, prec);
for (i = 0; i < len; i++)
acb_set_arb(res + i, tmp + i);
_arb_vec_clear(tmp, len);
return;
}
wp = prec + FLINT_BIT_COUNT(prec);
t = _acb_vec_init(len);
u = _acb_vec_init(len);
acb_init(zr);
/* use Stirling series */
acb_hypgeom_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 0, wp);
if (reflect)
{
/* log gamma(h+x) = log rf(1-(h+x), r) - log gamma(1-(h+x)+r) - log sin(pi (h+x)) + log(pi) */
if (r != 0) /* otherwise t = 0 */
{
acb_sub_ui(u, h, 1, wp);
acb_neg(u, u);
acb_hypgeom_log_rising_ui_jet(t, u, r, len, wp);
for (i = 1; i < len; i += 2)
acb_neg(t + i, t + i);
}
acb_sub_ui(u, h, 1, wp);
acb_neg(u, u);
acb_add_ui(zr, u, r, wp);
_acb_poly_gamma_stirling_eval(u, zr, n, len, wp);
for (i = 1; i < len; i += 2)
acb_neg(u + i, u + i);
_acb_vec_sub(t, t, u, len, wp);
/* log(sin) is unstable with large imaginary parts;
cot_pi is implemented in a numerically stable way */
acb_set(u, h);
acb_one(u + 1);
_acb_poly_cot_pi_series(u, u, 2, len - 1, wp);
_acb_poly_integral(u, u, len, wp);
acb_const_pi(u, wp);
_acb_vec_scalar_mul(u + 1, u + 1, len - 1, u, wp);
acb_log_sin_pi(u, h, wp);
_acb_vec_sub(u, t, u, len, wp);
acb_const_pi(t, wp); /* todo: constant for log pi */
acb_log(t, t, wp);
acb_add(u, u, t, wp);
}
else
{
/* log gamma(x) = log gamma(x+r) - log rf(x,r) */
acb_add_ui(zr, h, r, wp);
_acb_poly_gamma_stirling_eval(u, zr, n, len, wp);
if (r != 0)
{
acb_hypgeom_log_rising_ui_jet(t, h, r, len, wp);
_acb_vec_sub(u, u, t, len, wp);
}
}
/* compose with nonconstant part */
acb_zero(t);
_acb_vec_set(t + 1, h + 1, hlen - 1);
_acb_poly_compose_series(res, u, len, t, hlen, len, prec);
acb_clear(zr);
_acb_vec_clear(t, len);
_acb_vec_clear(u, len);
}
void
acb_poly_lgamma_series(acb_poly_t res, const acb_poly_t f, slong n, slong prec)
{
acb_poly_fit_length(res, n);
if (f->length == 0 || n == 0)
_acb_vec_indeterminate(res->coeffs, n);
else
_acb_poly_lgamma_series(res->coeffs, f->coeffs, f->length, n, prec);
_acb_poly_set_length(res, n);
_acb_poly_normalise(res);
}