mirror of
https://github.com/vale981/arb
synced 2025-03-05 17:31:38 -05:00
262 lines
6.2 KiB
C
262 lines
6.2 KiB
C
/*
|
|
Copyright (C) 2014, 2015, 2021 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_hypgeom.h"
|
|
#include "arb_hypgeom.h"
|
|
|
|
void acb_hypgeom_gamma_stirling_choose_param(int * reflect, slong * r, slong * n,
|
|
const acb_t z, int use_reflect, int digamma, slong prec);
|
|
|
|
void acb_hypgeom_gamma_stirling_inner(acb_t s, const acb_t z, slong N, slong prec);
|
|
|
|
static double
|
|
want_taylor(double x, double y, slong prec)
|
|
{
|
|
if (y < 0.0) y = -y;
|
|
if (x < 0.0) x = -2.0 * x;
|
|
|
|
if ((prec < 128 && y > 4.0) || (prec < 256 && y > 5.0) ||
|
|
(prec < 512 && y > 8.0) || (prec < 1024 && y > 9.0) || y > 10.0)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
if (x * (1.0 + 0.75 * y) > 8 + 0.15 * prec)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Linear fit on [0.5, 1.5] for
|
|
lambda x: findroot(lambda y: im(loggamma(x+1j*y)) - (n+0.5)*pi */
|
|
|
|
static const double Atab[] = {
|
|
4.5835631239879990091,
|
|
6.4037921417161376741,
|
|
7.9938623618272375768,
|
|
9.4449131928216797873,
|
|
10.802608819487725856,
|
|
12.0918817314347272,
|
|
};
|
|
|
|
static const double Btab[] = {
|
|
-1.1432582881376479127,
|
|
-0.86248117216701645437,
|
|
-0.75778990135448922722,
|
|
-0.69734688055939976228,
|
|
-0.65626499937495627271,
|
|
-0.62578331900739100617,
|
|
};
|
|
|
|
void
|
|
_arb_const_log_pi(arb_t t, slong prec)
|
|
{
|
|
arb_const_pi(t, prec + 2);
|
|
arb_log(t, t, prec);
|
|
}
|
|
|
|
ARB_DEF_CACHED_CONSTANT(arb_const_log_pi, _arb_const_log_pi)
|
|
|
|
int
|
|
acb_hypgeom_lgamma_taylor(acb_t res, const acb_t z, slong prec)
|
|
{
|
|
double x, y, acc;
|
|
slong k, r, wp;
|
|
acb_t t, u;
|
|
int reflect;
|
|
|
|
/* Assume xerr, yerr <= 1/16 */
|
|
if (mag_cmp_2exp_si(arb_radref(acb_realref(z)), -4) > 0)
|
|
return 0;
|
|
|
|
if (mag_cmp_2exp_si(arb_radref(acb_imagref(z)), -4) > 0)
|
|
return 0;
|
|
|
|
acc = acb_rel_accuracy_bits(z);
|
|
acc = FLINT_MAX(acc, 0);
|
|
wp = FLINT_MIN(prec, acc + 20);
|
|
wp = FLINT_MAX(wp, 2);
|
|
|
|
/* x, y plus eventual rounding error */
|
|
x = arf_get_d(arb_midref(acb_realref(z)), ARF_RND_NEAR);
|
|
y = arf_get_d(arb_midref(acb_imagref(z)), ARF_RND_NEAR);
|
|
|
|
if (!want_taylor(x, y, wp))
|
|
return 0;
|
|
|
|
acb_init(t);
|
|
acb_init(u);
|
|
|
|
/* Reduce real part to (approximately) [0.5, 1.5]. */
|
|
r = floor(x - 0.5);
|
|
|
|
/* Reflection formula is slower but improves accuracy. */
|
|
reflect = (x < -3.0);
|
|
|
|
if (reflect)
|
|
{
|
|
acb_neg(u, z);
|
|
acb_add_si(u, u, 2 + r, 2 * prec + 10);
|
|
x = 2.0 + r - x;
|
|
y = -y;
|
|
}
|
|
else
|
|
{
|
|
acb_sub_si(u, z, r, 2 * prec + 10);
|
|
x = x - r;
|
|
}
|
|
|
|
for (k = 0; k < 6; k++)
|
|
{
|
|
if (fabs(y) <= Atab[k] + Btab[k] * x)
|
|
{
|
|
if (!acb_hypgeom_gamma_taylor(t, u, 1, wp))
|
|
{
|
|
acb_clear(t);
|
|
acb_clear(u);
|
|
return 0;
|
|
}
|
|
|
|
if (k % 2 == 0)
|
|
{
|
|
acb_log(t, t, wp);
|
|
acb_neg(t, t);
|
|
}
|
|
else
|
|
{
|
|
acb_neg(t, t);
|
|
acb_log(t, t, wp);
|
|
acb_neg(t, t);
|
|
}
|
|
|
|
if (k != 0)
|
|
{
|
|
arb_t pi;
|
|
arb_init(pi);
|
|
arb_const_pi(pi, wp);
|
|
arb_addmul_si(acb_imagref(t), pi, (y > 0) ? k : -k, wp);
|
|
arb_clear(pi);
|
|
}
|
|
|
|
if (reflect)
|
|
{
|
|
acb_t v;
|
|
acb_init(v);
|
|
|
|
/* loggamma(x) = log(pi) - lsin(x) - loggamma(2+r-x) - logrf(2+r-x, -r-1) */
|
|
|
|
acb_hypgeom_log_rising_ui(v, u, -r-1, wp);
|
|
acb_log_sin_pi(res, z, wp);
|
|
acb_add(res, res, v, wp);
|
|
acb_add(res, res, t, wp);
|
|
acb_neg(res, res);
|
|
|
|
arb_const_log_pi(acb_realref(t), wp);
|
|
arb_zero(acb_imagref(t));
|
|
acb_add(res, res, t, prec);
|
|
|
|
acb_clear(v);
|
|
}
|
|
else if (r == 0)
|
|
{
|
|
acb_set_round(res, t, prec);
|
|
}
|
|
else if (r > 0)
|
|
{
|
|
acb_hypgeom_log_rising_ui(res, u, r, wp);
|
|
acb_add(res, res, t, prec);
|
|
}
|
|
else
|
|
{
|
|
acb_hypgeom_log_rising_ui(res, z, -r, wp);
|
|
acb_sub(res, t, res, prec);
|
|
}
|
|
|
|
acb_clear(t);
|
|
acb_clear(u);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
acb_clear(t);
|
|
acb_clear(u);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
acb_hypgeom_lgamma(acb_t y, const acb_t x, slong prec)
|
|
{
|
|
int reflect;
|
|
slong r, n, wp;
|
|
acb_t t, u, v;
|
|
double acc;
|
|
|
|
if (acb_is_real(x) && arb_is_positive(acb_realref(x)))
|
|
{
|
|
arb_hypgeom_lgamma(acb_realref(y), acb_realref(x), prec);
|
|
arb_zero(acb_imagref(y));
|
|
return;
|
|
}
|
|
|
|
if (acb_hypgeom_lgamma_taylor(y, x, prec))
|
|
return;
|
|
|
|
acc = acb_rel_accuracy_bits(x);
|
|
acc = FLINT_MAX(acc, 0);
|
|
wp = FLINT_MIN(prec, acc + 20);
|
|
wp = FLINT_MAX(wp, 2);
|
|
wp = wp + FLINT_BIT_COUNT(wp);
|
|
|
|
acb_hypgeom_gamma_stirling_choose_param(&reflect, &r, &n, x, 1, 0, wp);
|
|
|
|
acb_init(t);
|
|
acb_init(u);
|
|
acb_init(v);
|
|
|
|
if (reflect)
|
|
{
|
|
/* log gamma(x) = log rf(1-x, r) - log gamma(1-x+r) - log sin(pi x) + log(pi) */
|
|
acb_sub_ui(u, x, 1, wp);
|
|
acb_neg(u, u);
|
|
|
|
acb_hypgeom_log_rising_ui(t, u, r, wp);
|
|
|
|
acb_add_ui(u, u, r, wp);
|
|
acb_hypgeom_gamma_stirling_inner(v, u, n, wp);
|
|
acb_sub(t, t, v, wp);
|
|
|
|
acb_log_sin_pi(u, x, wp);
|
|
acb_sub(t, t, u, wp);
|
|
|
|
arb_const_log_pi(acb_realref(u), wp);
|
|
arb_zero(acb_imagref(u));
|
|
|
|
acb_add(y, t, u, wp);
|
|
}
|
|
else
|
|
{
|
|
/* log gamma(x) = log gamma(x+r) - log rf(x,r) */
|
|
acb_add_ui(t, x, r, wp);
|
|
acb_hypgeom_gamma_stirling_inner(u, t, n, wp);
|
|
acb_hypgeom_log_rising_ui(t, x, r, wp);
|
|
acb_sub(y, u, t, prec);
|
|
}
|
|
|
|
if (!acb_is_finite(y))
|
|
acb_indeterminate(y);
|
|
|
|
acb_clear(t);
|
|
acb_clear(u);
|
|
acb_clear(v);
|
|
}
|
|
|