mirror of
https://github.com/vale981/arb
synced 2025-03-06 01:41:39 -05:00
219 lines
9.5 KiB
C
219 lines
9.5 KiB
C
/*
|
|
Copyright (C) 2017 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_elliptic.h"
|
|
|
|
/* Test input from Carlson's paper and checked with mpmath. */
|
|
|
|
static const double testdata_rj[16][10] = {
|
|
{0.0, 0.0, 1.0, 0.0, 2.0, 0.0, 3.0, 0.0, 0.77688623778582332014, 0.0},
|
|
{2.0, 0.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0, 0.14297579667156753833, 0.0},
|
|
{2.0, 0.0, 3.0, 0.0, 4.0, 0.0, -1.0, 1.0, 0.13613945827770535204, -0.3820756162442716425},
|
|
{0.0, 1.0, 0.0, -1.0, 0.0, 0.0, 2.0, 0.0, 1.6490011662710884518, 0.0},
|
|
{-1.0, 1.0, -1.0, -1.0, 1.0, 0.0, 2.0, 0.0, 0.94148358841220238083, 0.0},
|
|
{0.0, 1.0, 0.0, -1.0, 0.0, 0.0, 1.0, -1.0, 1.8260115229009316249, 1.22906619086434715},
|
|
{-1.0, 1.0, -1.0, -1.0, 1.0, 0.0, -3.0, 1.0, -0.61127970812028172124, -1.068403839000680788},
|
|
{-1.0, 1.0, -2.0, -1.0, 0.0, -1.0, -1.0, 1.0, 1.8249027393703805305, -1.2218475784827035855},
|
|
/* additional tests where Carlson's algorithm may not be valid */
|
|
{-1.0, -0.5, -10.0, -6.0, -10.0, -3.0, -5.0, 10.0, 0.128470516743927699, 0.102175950778504625},
|
|
{1.987, 0.0, 4.463, -1.614, 0.0, 0.0, -3.965, 0.0, -0.341575118513811305, -0.394703757004268486},
|
|
{0.3068, 0.0, -4.037, 0.632, 1.654, 0.0, -0.9609, 0.0, -1.14735199581485639, -0.134450158867472264},
|
|
{0.3068, 0.0, -4.037, -0.632, 1.654, 0.0, -0.9609, 0.0, 1.758765901861727, -0.161002343366626892},
|
|
{0.3068, 0.0, -4.037, 0.0632, 1.654, 0.0, -0.9609, 0.0, -1.17157627949475577, -0.069182614173988811},
|
|
{0.3068, 0.0, -4.037, -0.0632, 1.654, 0.0, -0.9609, 0.0, 1.77940452391261626, 0.0388711305592447234},
|
|
{0.3068, 0.0, -4.037, 0.00632, 1.654, 0.0, -0.9609, 0.0, -1.17337595670549633, -0.0623069224526925},
|
|
{0.3068, 0.0, -4.037, -0.00632, 1.654, 0.0, -0.9609, 0.0, 1.77806722756403055, 0.0592749824572262329},
|
|
};
|
|
|
|
static const double testdata_rd[6][8] = {
|
|
{0.0, 0.0, 2.0, 0.0, 1.0, 0.0, 1.7972103521033883112, 0.0},
|
|
{2.0, 0.0, 3.0, 0.0, 4.0, 0.0, 0.16510527294261053349, 0.0},
|
|
{0.0, 1.0, 0.0, -1.0, 2.0, 0.0, 0.65933854154219768919, 0.0},
|
|
{0.0, 0.0, 0.0, 1.0, 0.0, -1.0, 1.2708196271909686299, 2.7811120159520578776},
|
|
{0.0, 0.0, -1.0, 1.0, 0.0, 1.0, -1.8577235439239060056, -0.96193450888838559989},
|
|
{-2.0, -1.0, 0.0, -1.0, -1.0, 1.0, 1.8249027393703805305, -1.2218475784827035855},
|
|
};
|
|
|
|
int main()
|
|
{
|
|
slong iter;
|
|
flint_rand_t state;
|
|
|
|
flint_printf("rj....");
|
|
fflush(stdout);
|
|
|
|
flint_randinit(state);
|
|
|
|
for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++)
|
|
{
|
|
acb_t x, y, z, p, r1, r2;
|
|
slong prec1, prec2;
|
|
|
|
prec1 = 2 + n_randint(state, 300);
|
|
prec2 = 2 + n_randint(state, 300);
|
|
|
|
acb_init(x);
|
|
acb_init(y);
|
|
acb_init(z);
|
|
acb_init(p);
|
|
acb_init(r1);
|
|
acb_init(r2);
|
|
|
|
if (iter == 0)
|
|
{
|
|
slong k;
|
|
|
|
for (k = 0; k < 16; k++)
|
|
{
|
|
acb_set_d_d(x, testdata_rj[k][0], testdata_rj[k][1]);
|
|
acb_set_d_d(y, testdata_rj[k][2], testdata_rj[k][3]);
|
|
acb_set_d_d(z, testdata_rj[k][4], testdata_rj[k][5]);
|
|
acb_set_d_d(p, testdata_rj[k][6], testdata_rj[k][7]);
|
|
acb_set_d_d(r2, testdata_rj[k][8], testdata_rj[k][9]);
|
|
mag_set_d(arb_radref(acb_realref(r2)), 1e-14 * fabs(testdata_rj[k][8]));
|
|
mag_set_d(arb_radref(acb_imagref(r2)), 1e-14 * fabs(testdata_rj[k][9]));
|
|
|
|
for (prec1 = 16; prec1 <= 256; prec1 *= 2)
|
|
{
|
|
acb_elliptic_rj(r1, x, y, z, p, 0, prec1);
|
|
|
|
if (!acb_overlaps(r1, r2) || (k < 8 && acb_rel_accuracy_bits(r1) < prec1 - 12))
|
|
{
|
|
flint_printf("FAIL: overlap (testdata rj)\n\n");
|
|
flint_printf("prec = %wd, accuracy = %wd\n\n", prec1, acb_rel_accuracy_bits(r1));
|
|
flint_printf("x = "); acb_printd(x, 30); flint_printf("\n\n");
|
|
flint_printf("y = "); acb_printd(y, 30); flint_printf("\n\n");
|
|
flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n");
|
|
flint_printf("p = "); acb_printd(p, 30); flint_printf("\n\n");
|
|
flint_printf("r1 = "); acb_printd(r1, 30); flint_printf("\n\n");
|
|
flint_printf("r2 = "); acb_printd(r2, 30); flint_printf("\n\n");
|
|
flint_abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
for (k = 0; k < 6; k++)
|
|
{
|
|
acb_set_d_d(x, testdata_rd[k][0], testdata_rd[k][1]);
|
|
acb_set_d_d(y, testdata_rd[k][2], testdata_rd[k][3]);
|
|
acb_set_d_d(z, testdata_rd[k][4], testdata_rd[k][5]);
|
|
acb_set_d_d(r2, testdata_rd[k][6], testdata_rd[k][7]);
|
|
mag_set_d(arb_radref(acb_realref(r2)), 1e-14 * fabs(testdata_rd[k][6]));
|
|
mag_set_d(arb_radref(acb_imagref(r2)), 1e-14 * fabs(testdata_rd[k][7]));
|
|
|
|
for (prec1 = 16; prec1 <= 256; prec1 *= 2)
|
|
{
|
|
acb_elliptic_rj(r1, x, y, z, z, 0, prec1);
|
|
|
|
if (!acb_overlaps(r1, r2) || acb_rel_accuracy_bits(r1) < prec1 - 12)
|
|
{
|
|
flint_printf("FAIL: overlap (testdata rd)\n\n");
|
|
flint_printf("prec = %wd, accuracy = %wd\n\n", prec1, acb_rel_accuracy_bits(r1));
|
|
flint_printf("x = "); acb_printd(x, 30); flint_printf("\n\n");
|
|
flint_printf("y = "); acb_printd(y, 30); flint_printf("\n\n");
|
|
flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n");
|
|
flint_printf("r1 = "); acb_printd(r1, 30); flint_printf("\n\n");
|
|
flint_printf("r2 = "); acb_printd(r2, 30); flint_printf("\n\n");
|
|
flint_abort();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
acb_randtest(x, state, 1 + n_randint(state, 300), 1 + n_randint(state, 30));
|
|
acb_randtest(y, state, 1 + n_randint(state, 300), 1 + n_randint(state, 30));
|
|
acb_randtest(z, state, 1 + n_randint(state, 300), 1 + n_randint(state, 30));
|
|
acb_set(p, z);
|
|
|
|
/* Potentially slow general tests */
|
|
if ((arb_is_nonnegative(acb_realref(x)) &&
|
|
arb_is_nonnegative(acb_realref(y)) &&
|
|
arb_is_nonnegative(acb_realref(z)) &&
|
|
arb_is_positive(acb_realref(p))) || (n_randint(state, 10) == 0 && prec1 < 100 && prec2 < 100))
|
|
{
|
|
acb_elliptic_rj(r1, x, y, z, z, 0, prec1);
|
|
acb_elliptic_rj(r2, x, y, z, p, 0, prec2);
|
|
|
|
if (!acb_overlaps(r1, r2))
|
|
{
|
|
flint_printf("FAIL: overlap R_D\n\n");
|
|
flint_printf("x = "); acb_printd(x, 30); flint_printf("\n\n");
|
|
flint_printf("y = "); acb_printd(y, 30); flint_printf("\n\n");
|
|
flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n");
|
|
flint_printf("p = "); acb_printd(p, 30); flint_printf("\n\n");
|
|
flint_printf("r1 = "); acb_printd(r1, 30); flint_printf("\n\n");
|
|
flint_printf("r2 = "); acb_printd(r2, 30); flint_printf("\n\n");
|
|
flint_abort();
|
|
}
|
|
|
|
acb_randtest(p, state, 1 + n_randint(state, 300), 1 + n_randint(state, 30));
|
|
|
|
/* Specialize */
|
|
if (n_randint(state, 2))
|
|
{
|
|
if (arb_is_zero(acb_imagref(y)))
|
|
arb_one(acb_imagref(y));
|
|
acb_conj(z, y);
|
|
arb_zero(acb_imagref(x));
|
|
arb_abs(acb_realref(x), acb_realref(x));
|
|
}
|
|
|
|
acb_elliptic_rj(r1, x, y, z, p, 0, prec1);
|
|
|
|
switch (n_randint(state, 6))
|
|
{
|
|
case 0:
|
|
acb_elliptic_rj(r2, x, y, z, p, 0, prec2);
|
|
break;
|
|
case 1:
|
|
acb_elliptic_rj(r2, x, z, y, p, 0, prec2);
|
|
break;
|
|
case 2:
|
|
acb_elliptic_rj(r2, y, x, z, p, 0, prec2);
|
|
break;
|
|
case 3:
|
|
acb_elliptic_rj(r2, y, z, x, p, 0, prec2);
|
|
break;
|
|
case 4:
|
|
acb_elliptic_rj(r2, z, x, y, p, 0, prec2);
|
|
break;
|
|
default:
|
|
acb_elliptic_rj(r2, z, y, x, p, 0, prec2);
|
|
break;
|
|
}
|
|
|
|
if (!acb_overlaps(r1, r2))
|
|
{
|
|
flint_printf("FAIL: overlap\n\n");
|
|
flint_printf("x = "); acb_printd(x, 30); flint_printf("\n\n");
|
|
flint_printf("y = "); acb_printd(y, 30); flint_printf("\n\n");
|
|
flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n");
|
|
flint_printf("p = "); acb_printd(p, 30); flint_printf("\n\n");
|
|
flint_printf("r1 = "); acb_printd(r1, 30); flint_printf("\n\n");
|
|
flint_printf("r2 = "); acb_printd(r2, 30); flint_printf("\n\n");
|
|
flint_abort();
|
|
}
|
|
}
|
|
|
|
acb_clear(x);
|
|
acb_clear(y);
|
|
acb_clear(z);
|
|
acb_clear(p);
|
|
acb_clear(r1);
|
|
acb_clear(r2);
|
|
}
|
|
|
|
flint_randclear(state);
|
|
flint_cleanup();
|
|
flint_printf("PASS\n");
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|