mirror of
https://github.com/vale981/arb
synced 2025-03-05 09:21:38 -05:00
269 lines
8.1 KiB
C
269 lines
8.1 KiB
C
/*
|
||
Copyright (C) 2018 Fredrik Johansson
|
||
|
||
This file is part of Arb.
|
||
|
||
Arb is free software: you can redistribute it and/or modify it under
|
||
the terms of the GNU Lesser General Public License (LGPL) as published
|
||
by the Free Software Foundation; either version 2.1 of the License, or
|
||
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
#include "arb_hypgeom.h"
|
||
|
||
/*
|
||
https://dlmf.nist.gov/9.9
|
||
|
||
a_k ~ -T(3/8 pi (4k-1))
|
||
a'_k ~ -U(3/8 pi (4k-3))
|
||
b_k ~ -T(3/8 pi (4k-3))
|
||
b'_k ~ -U(3/8 pi (4k-1))
|
||
|
||
For a_k and b_k, the u^8 and u^10 truncations are known to give lower
|
||
bounds. [G. Pittaluga and L. Sacripante (1991) Inequalities for the
|
||
zeros of the Airy functions. SIAM J. Math. Anal. 22 (1), pp. 260–267.]
|
||
|
||
We don't have proofs for a'_k and b'_k. However, in that case, we can just
|
||
do a single interval Newton step to verify that we have isolated a
|
||
zero (the enclosure must be for the correct zero due to sandwiching).
|
||
*/
|
||
|
||
#define AI 0
|
||
#define BI 1
|
||
#define AI_PRIME 2
|
||
#define BI_PRIME 3
|
||
|
||
static const double initial[4][10] = {{
|
||
-658118728906175.0,-1150655474581104.0,-1553899449042978.0,-1910288501594969.0,
|
||
-2236074816421182.0,-2539650438812533.0,-2826057838960988.0,
|
||
-3098624122012011.0,-3359689702679955.0,-3610979637739094.0},{
|
||
-330370902027041.0,-920730911234245.0,-1359731821477101.0,-1736658984124319.0,
|
||
-2076373934490092.0,-2390271103799312.0,-2684763040788193.0,
|
||
-2963907159065113.0,-3230475233555475.0,-3486466475611047.0},{
|
||
-286764727967452.0,-914286338795679.0,-1356737313209586.0,-1734816794389239.0,
|
||
-2075083421171399.0,-2389296605766914.0,-2683990299959380.0,
|
||
-2963272965051282.0,-3229941298662311.0,-3486008018531685.0},{
|
||
-645827356227815.0,-1146491233835383.0,-1551601459626981.0,-1908764696253222.0,
|
||
-2234961611612173.0,-2538787015856429.0,-2825360342097020.0,
|
||
-3098043823061022.0,-3359196018589429.0,-3610552233837226.0,
|
||
}};
|
||
|
||
void
|
||
_arb_hypgeom_airy_zero(arb_t res, const fmpz_t n, int which, slong prec)
|
||
{
|
||
slong asymp_accuracy, wp;
|
||
|
||
if (fmpz_cmp_ui(n, 10) <= 0)
|
||
{
|
||
if (fmpz_sgn(n) <= 0)
|
||
{
|
||
flint_printf("Airy zero only defined for index >= 1\n");
|
||
flint_abort();
|
||
}
|
||
|
||
/* The asymptotic expansions work well except when n == 1, so
|
||
use precomputed starting intervals (also for the first
|
||
few larger n as a small optimization). */
|
||
arf_set_d(arb_midref(res), ldexp(initial[which][fmpz_get_ui(n)-1], -48));
|
||
mag_set_d(arb_radref(res), ldexp(1.0, -48));
|
||
asymp_accuracy = 48;
|
||
}
|
||
else
|
||
{
|
||
arb_t z, u, u2, u4, s;
|
||
fmpz_t c;
|
||
|
||
arb_init(z);
|
||
arb_init(u);
|
||
arb_init(u2);
|
||
arb_init(u4);
|
||
arb_init(s);
|
||
fmpz_init(c);
|
||
|
||
if (which == AI || which == BI_PRIME)
|
||
asymp_accuracy = 13 + 10 * (fmpz_bits(n) - 1);
|
||
else
|
||
{
|
||
fmpz_sub_ui(c, n, 1);
|
||
asymp_accuracy = 13 + 10 * (fmpz_bits(c) - 1);
|
||
}
|
||
|
||
wp = asymp_accuracy + 8;
|
||
/* Reduce precision since we may not need to do any Newton steps. */
|
||
if (which == AI || which == BI)
|
||
wp = FLINT_MIN(wp, prec + 8);
|
||
|
||
arb_const_pi(z, wp);
|
||
fmpz_mul_2exp(c, n, 2);
|
||
if (which == AI || which == BI_PRIME)
|
||
fmpz_sub_ui(c, c, 1);
|
||
else
|
||
fmpz_sub_ui(c, c, 3);
|
||
fmpz_mul_ui(c, c, 3);
|
||
arb_mul_fmpz(z, z, c, wp);
|
||
arb_mul_2exp_si(z, z, -3);
|
||
|
||
arb_inv(u, z, wp);
|
||
arb_mul(u2, u, u, wp);
|
||
arb_mul(u4, u2, u2, wp);
|
||
|
||
if (which == AI || which == BI)
|
||
{
|
||
/* u^8 truncation gives lower bound */
|
||
arb_mul_si(s, u4, -108056875, wp);
|
||
arb_addmul_si(s, u2, 6478500, wp);
|
||
arb_add_si(s, s, -967680, wp);
|
||
arb_mul(s, s, u4, wp);
|
||
arb_addmul_si(s, u2, 725760, wp);
|
||
arb_div_ui(s, s, 6967296, wp);
|
||
|
||
/* u^10 term gives upper bound */
|
||
arb_mul(u4, u4, u4, 10);
|
||
arb_mul(u4, u4, u2, 10);
|
||
arb_mul_ui(u4, u4, 486, 10);
|
||
}
|
||
else
|
||
{
|
||
/* u^8 truncation gives upper bound */
|
||
arb_mul_si(s, u4, 18683371, wp);
|
||
arb_addmul_si(s, u2, -1087338, wp);
|
||
arb_add_si(s, s, 151200, wp);
|
||
arb_mul(s, s, u4, wp);
|
||
arb_addmul_si(s, u2, -181440, wp);
|
||
arb_div_ui(s, s, 1244160, wp);
|
||
|
||
/* u^10 term gives lower bound */
|
||
arb_mul(u4, u4, u4, 10);
|
||
arb_mul(u4, u4, u2, 10);
|
||
arb_mul_ui(u4, u4, 477, 10);
|
||
arb_neg(u4, u4);
|
||
}
|
||
|
||
arb_mul_2exp_si(u4, u4, -1);
|
||
arb_add(s, s, u4, wp);
|
||
arb_add_error(s, u4);
|
||
|
||
arb_add_ui(s, s, 1, wp);
|
||
arb_root_ui(z, z, 3, wp);
|
||
arb_mul(z, z, z, wp);
|
||
arb_mul(res, z, s, wp);
|
||
|
||
arb_neg(res, res);
|
||
|
||
arb_clear(z);
|
||
arb_clear(u);
|
||
arb_clear(u2);
|
||
arb_clear(u4);
|
||
arb_clear(s);
|
||
fmpz_clear(c);
|
||
}
|
||
|
||
/* Do interval Newton steps for refinement. Important: for the
|
||
primed zeros, we need to do at least one interval Newton step to
|
||
validate the initial (tentative) inclusion. */
|
||
if (asymp_accuracy < prec || (which == AI_PRIME || which == BI_PRIME))
|
||
{
|
||
arb_t f, fprime, root;
|
||
mag_t C, r;
|
||
slong * steps;
|
||
slong step, extraprec;
|
||
|
||
arb_init(f);
|
||
arb_init(fprime);
|
||
arb_init(root);
|
||
mag_init(C);
|
||
mag_init(r);
|
||
steps = flint_malloc(sizeof(slong) * FLINT_BITS);
|
||
|
||
extraprec = 0.25 * fmpz_bits(n) + 8;
|
||
wp = asymp_accuracy + extraprec;
|
||
|
||
/* C = |f''| or |f'''| on the initial interval given by res */
|
||
/* f''(x) = xf(x) */
|
||
/* f'''(x) = xf'(x) + f(x) */
|
||
if (which == AI || which == AI_PRIME)
|
||
arb_hypgeom_airy(f, fprime, NULL, NULL, res, wp);
|
||
else
|
||
arb_hypgeom_airy(NULL, NULL, f, fprime, res, wp);
|
||
|
||
if (which == AI || which == BI)
|
||
arb_mul(f, f, res, wp);
|
||
else
|
||
arb_addmul(f, fprime, res, wp);
|
||
|
||
arb_get_mag(C, f);
|
||
|
||
step = 0;
|
||
steps[step] = prec;
|
||
|
||
while (steps[step] / 2 > asymp_accuracy - extraprec)
|
||
{
|
||
steps[step + 1] = steps[step] / 2;
|
||
step++;
|
||
}
|
||
|
||
arb_set(root, res);
|
||
|
||
for ( ; step >= 0; step--)
|
||
{
|
||
wp = steps[step] + extraprec;
|
||
wp = FLINT_MAX(wp, arb_rel_accuracy_bits(root) + extraprec);
|
||
|
||
/* store radius, set root to the midpoint */
|
||
mag_set(r, arb_radref(root));
|
||
mag_zero(arb_radref(root));
|
||
|
||
if (which == AI || which == AI_PRIME)
|
||
arb_hypgeom_airy(f, fprime, NULL, NULL, root, wp);
|
||
else
|
||
arb_hypgeom_airy(NULL, NULL, f, fprime, root, wp);
|
||
|
||
/* f, f' = f', xf */
|
||
if (which == AI_PRIME || which == BI_PRIME)
|
||
{
|
||
arb_mul(f, f, root, wp);
|
||
arb_swap(f, fprime);
|
||
}
|
||
|
||
/* f'([m+/-r]) = f'(m) +/- f''([m +/- r]) * r */
|
||
mag_mul(r, C, r);
|
||
arb_add_error_mag(fprime, r);
|
||
arb_div(f, f, fprime, wp);
|
||
arb_sub(root, root, f, wp);
|
||
|
||
/* Verify inclusion so that C is still valid, and for the
|
||
primed zeros also to make sure that the initial
|
||
intervals really were correct. */
|
||
if (!arb_contains(res, root))
|
||
{
|
||
flint_printf("unexpected: no containment of Airy zero\n");
|
||
arb_indeterminate(root);
|
||
break;
|
||
}
|
||
}
|
||
|
||
arb_set(res, root);
|
||
|
||
arb_clear(f);
|
||
arb_clear(fprime);
|
||
arb_clear(root);
|
||
mag_clear(C);
|
||
mag_clear(r);
|
||
flint_free(steps);
|
||
}
|
||
|
||
arb_set_round(res, res, prec);
|
||
}
|
||
|
||
void
|
||
arb_hypgeom_airy_zero(arb_t ai, arb_t aip, arb_t bi, arb_t bip, const fmpz_t n, slong prec)
|
||
{
|
||
if (ai != NULL)
|
||
_arb_hypgeom_airy_zero(ai, n, AI, prec);
|
||
if (aip != NULL)
|
||
_arb_hypgeom_airy_zero(aip, n, AI_PRIME, prec);
|
||
if (bi != NULL)
|
||
_arb_hypgeom_airy_zero(bi, n, BI, prec);
|
||
if (bip != NULL)
|
||
_arb_hypgeom_airy_zero(bip, n, BI_PRIME, prec);
|
||
}
|