mirror of
https://github.com/vale981/arb
synced 2025-03-05 09:21:38 -05:00
175 lines
4.6 KiB
C
175 lines
4.6 KiB
C
/*
|
|
Copyright (C) 2012 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "arb_poly.h"
|
|
|
|
/* allow changing this from the test code */
|
|
slong arb_poly_newton_exp_cutoff = 200;
|
|
|
|
/* with inverse=1 simultaneously computes g = exp(-x) to length n
|
|
with inverse=0 uses g as scratch space, computing
|
|
g = exp(-x) only to length (n+1)/2 */
|
|
static void
|
|
_arb_poly_exp_series_newton(arb_ptr f, arb_ptr g,
|
|
arb_srcptr h, slong len, slong prec, int inverse, slong cutoff)
|
|
{
|
|
slong alloc;
|
|
arb_ptr T, U, hprime;
|
|
|
|
alloc = 3 * len;
|
|
T = _arb_vec_init(alloc);
|
|
U = T + len;
|
|
hprime = U + len;
|
|
|
|
_arb_poly_derivative(hprime, h, len, prec);
|
|
arb_zero(hprime + len - 1);
|
|
|
|
NEWTON_INIT(cutoff, len)
|
|
|
|
/* f := exp(h) + O(x^m), g := exp(-h) + O(x^m2) */
|
|
NEWTON_BASECASE(n)
|
|
_arb_poly_exp_series_basecase(f, h, n, n, prec);
|
|
_arb_poly_inv_series(g, f, (n + 1) / 2, (n + 1) / 2, prec);
|
|
NEWTON_END_BASECASE
|
|
|
|
/* extend from length m to length n */
|
|
NEWTON_LOOP(m, n)
|
|
|
|
slong m2 = (m + 1) / 2;
|
|
slong l = m - 1; /* shifted for derivative */
|
|
|
|
/* g := exp(-h) + O(x^m) */
|
|
_arb_poly_mullow(T, f, m, g, m2, m, prec);
|
|
_arb_poly_mullow(g + m2, g, m2, T + m2, m - m2, m - m2, prec);
|
|
_arb_vec_neg(g + m2, g + m2, m - m2);
|
|
|
|
/* U := h' + g (f' - f h') + O(x^(n-1))
|
|
Note: should replace h' by h' mod x^(m-1) */
|
|
_arb_vec_zero(f + m, n - m);
|
|
_arb_poly_mullow(T, f, n, hprime, n, n, prec); /* should be mulmid */
|
|
_arb_poly_derivative(U, f, n, prec); arb_zero(U + n - 1); /* should skip low terms */
|
|
_arb_vec_sub(U + l, U + l, T + l, n - l, prec);
|
|
_arb_poly_mullow(T + l, g, n - m, U + l, n - m, n - m, prec);
|
|
_arb_vec_add(U + l, hprime + l, T + l, n - m, prec);
|
|
|
|
/* f := f + f * (h - int U) + O(x^n) = exp(h) + O(x^n) */
|
|
_arb_poly_integral(U, U, n, prec); /* should skip low terms */
|
|
_arb_vec_sub(U + m, h + m, U + m, n - m, prec);
|
|
_arb_poly_mullow(f + m, f, n - m, U + m, n - m, n - m, prec);
|
|
|
|
/* g := exp(-h) + O(x^n) */
|
|
/* not needed if we only want exp(x) */
|
|
if (n == len && inverse)
|
|
{
|
|
_arb_poly_mullow(T, f, n, g, m, n, prec);
|
|
_arb_poly_mullow(g + m, g, m, T + m, n - m, n - m, prec);
|
|
_arb_vec_neg(g + m, g + m, n - m);
|
|
}
|
|
|
|
NEWTON_END_LOOP
|
|
|
|
NEWTON_END
|
|
|
|
_arb_vec_clear(T, alloc);
|
|
}
|
|
|
|
void
|
|
_arb_poly_exp_series(arb_ptr f, arb_srcptr h, slong hlen, slong n, slong prec)
|
|
{
|
|
hlen = FLINT_MIN(hlen, n);
|
|
|
|
if (hlen == 1)
|
|
{
|
|
arb_exp(f, h, prec);
|
|
_arb_vec_zero(f + 1, n - 1);
|
|
}
|
|
else if (n == 2)
|
|
{
|
|
arb_exp(f, h, prec);
|
|
arb_mul(f + 1, f, h + 1, prec); /* safe since hlen >= 2 */
|
|
}
|
|
else if (_arb_vec_is_zero(h + 1, hlen - 2)) /* h = a + bx^d */
|
|
{
|
|
slong i, j, d = hlen - 1;
|
|
arb_t t;
|
|
arb_init(t);
|
|
arb_set(t, h + d);
|
|
arb_exp(f, h, prec);
|
|
for (i = 1, j = d; j < n; j += d, i++)
|
|
{
|
|
arb_mul(f + j, f + j - d, t, prec);
|
|
arb_div_ui(f + j, f + j, i, prec);
|
|
_arb_vec_zero(f + j - d + 1, hlen - 2);
|
|
}
|
|
_arb_vec_zero(f + j - d + 1, n - (j - d + 1));
|
|
arb_clear(t);
|
|
}
|
|
else if (hlen <= arb_poly_newton_exp_cutoff)
|
|
{
|
|
_arb_poly_exp_series_basecase(f, h, hlen, n, prec);
|
|
}
|
|
else
|
|
{
|
|
arb_ptr g, t;
|
|
arb_t u;
|
|
int fix;
|
|
|
|
g = _arb_vec_init((n + 1) / 2);
|
|
fix = (hlen < n || h == f || !arb_is_zero(h));
|
|
|
|
if (fix)
|
|
{
|
|
t = _arb_vec_init(n);
|
|
_arb_vec_set(t + 1, h + 1, hlen - 1);
|
|
}
|
|
else
|
|
t = (arb_ptr) h;
|
|
|
|
arb_init(u);
|
|
arb_exp(u, h, prec);
|
|
|
|
_arb_poly_exp_series_newton(f, g, t, n, prec, 0, arb_poly_newton_exp_cutoff);
|
|
|
|
if (!arb_is_one(u))
|
|
_arb_vec_scalar_mul(f, f, n, u, prec);
|
|
|
|
_arb_vec_clear(g, (n + 1) / 2);
|
|
if (fix)
|
|
_arb_vec_clear(t, n);
|
|
arb_clear(u);
|
|
}
|
|
}
|
|
|
|
void
|
|
arb_poly_exp_series(arb_poly_t f, const arb_poly_t h, slong n, slong prec)
|
|
{
|
|
slong hlen = h->length;
|
|
|
|
if (n == 0)
|
|
{
|
|
arb_poly_zero(f);
|
|
return;
|
|
}
|
|
|
|
if (hlen == 0)
|
|
{
|
|
arb_poly_one(f);
|
|
return;
|
|
}
|
|
|
|
if (hlen == 1)
|
|
n = 1;
|
|
|
|
arb_poly_fit_length(f, n);
|
|
_arb_poly_exp_series(f->coeffs, h->coeffs, hlen, n, prec);
|
|
_arb_poly_set_length(f, n);
|
|
_arb_poly_normalise(f);
|
|
}
|