mirror of
https://github.com/vale981/arb
synced 2025-03-05 09:21:38 -05:00
213 lines
6.5 KiB
C
213 lines
6.5 KiB
C
/*
|
|
Copyright (C) 2013 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_calc.h"
|
|
#include "math.h"
|
|
|
|
int
|
|
acb_calc_integrate_taylor(acb_t res,
|
|
acb_calc_func_t func, void * param,
|
|
const acb_t a, const acb_t b,
|
|
const arf_t inner_radius,
|
|
const arf_t outer_radius,
|
|
slong accuracy_goal, slong prec)
|
|
{
|
|
slong num_steps, step, N, bp;
|
|
int result;
|
|
|
|
acb_t delta, m, x, y1, y2, sum;
|
|
acb_ptr taylor_poly;
|
|
arf_t err;
|
|
|
|
acb_init(delta);
|
|
acb_init(m);
|
|
acb_init(x);
|
|
acb_init(y1);
|
|
acb_init(y2);
|
|
acb_init(sum);
|
|
arf_init(err);
|
|
|
|
acb_sub(delta, b, a, prec);
|
|
|
|
/* precision used for bounds calculations */
|
|
bp = MAG_BITS;
|
|
|
|
/* compute the number of steps */
|
|
{
|
|
arf_t t;
|
|
arf_init(t);
|
|
acb_get_abs_ubound_arf(t, delta, bp);
|
|
arf_div(t, t, inner_radius, bp, ARF_RND_UP);
|
|
arf_mul_2exp_si(t, t, -1);
|
|
num_steps = (slong) (arf_get_d(t, ARF_RND_UP) + 1.0);
|
|
/* make sure it's not something absurd */
|
|
num_steps = FLINT_MIN(num_steps, 10 * prec);
|
|
num_steps = FLINT_MAX(num_steps, 1);
|
|
arf_clear(t);
|
|
}
|
|
|
|
result = ARB_CALC_SUCCESS;
|
|
|
|
acb_zero(sum);
|
|
|
|
for (step = 0; step < num_steps; step++)
|
|
{
|
|
/* midpoint of subinterval */
|
|
acb_mul_ui(m, delta, 2 * step + 1, prec);
|
|
acb_div_ui(m, m, 2 * num_steps, prec);
|
|
acb_add(m, m, a, prec);
|
|
|
|
if (arb_calc_verbose)
|
|
{
|
|
flint_printf("integration point %wd/%wd: ", 2 * step + 1, 2 * num_steps);
|
|
acb_printd(m, 15); flint_printf("\n");
|
|
}
|
|
|
|
/* evaluate at +/- x */
|
|
/* TODO: exactify m, and include error in x? */
|
|
acb_div_ui(x, delta, 2 * num_steps, prec);
|
|
|
|
/* compute bounds and number of terms to use */
|
|
{
|
|
arb_t cbound, xbound, rbound;
|
|
arf_t C, D, R, X, T;
|
|
double DD, TT, NN;
|
|
|
|
arb_init(cbound);
|
|
arb_init(xbound);
|
|
arb_init(rbound);
|
|
arf_init(C);
|
|
arf_init(D);
|
|
arf_init(R);
|
|
arf_init(X);
|
|
arf_init(T);
|
|
|
|
/* R is the outer radius */
|
|
arf_set(R, outer_radius);
|
|
|
|
/* X = upper bound for |x| */
|
|
acb_get_abs_ubound_arf(X, x, bp);
|
|
arb_set_arf(xbound, X);
|
|
|
|
/* Compute C(m,R). Important subtlety: due to rounding when
|
|
computing m, we will in general be farther than R away from
|
|
the integration path. But since acb_calc_cauchy_bound
|
|
actually integrates over the area traced by a complex
|
|
interval, it will catch any extra singularities (giving
|
|
an infinite bound). */
|
|
arb_set_arf(rbound, outer_radius);
|
|
acb_calc_cauchy_bound(cbound, func, param, m, rbound, 8, bp);
|
|
arf_set_mag(C, arb_radref(cbound));
|
|
arf_add(C, arb_midref(cbound), C, bp, ARF_RND_UP);
|
|
|
|
/* Sanity check: we need C < inf and R > X */
|
|
if (arf_is_finite(C) && arf_cmp(R, X) > 0)
|
|
{
|
|
/* Compute upper bound for D = C * R * X / (R - X) */
|
|
arf_mul(D, C, R, bp, ARF_RND_UP);
|
|
arf_mul(D, D, X, bp, ARF_RND_UP);
|
|
arf_sub(T, R, X, bp, ARF_RND_DOWN);
|
|
arf_div(D, D, T, bp, ARF_RND_UP);
|
|
|
|
/* Compute upper bound for T = (X / R) */
|
|
arf_div(T, X, R, bp, ARF_RND_UP);
|
|
|
|
/* Choose N */
|
|
/* TODO: use arf arithmetic to avoid overflow */
|
|
/* TODO: use relative accuracy (look at |f(m)|?) */
|
|
DD = arf_get_d(D, ARF_RND_UP);
|
|
TT = arf_get_d(T, ARF_RND_UP);
|
|
NN = -(accuracy_goal * 0.69314718055994530942 + log(DD)) / log(TT);
|
|
N = NN + 0.5;
|
|
N = FLINT_MIN(N, 100 * prec);
|
|
N = FLINT_MAX(N, 1);
|
|
|
|
/* Tail bound: D / (N + 1) * T^N */
|
|
{
|
|
mag_t TT;
|
|
mag_init(TT);
|
|
arf_get_mag(TT, T);
|
|
mag_pow_ui(TT, TT, N);
|
|
arf_set_mag(T, TT);
|
|
mag_clear(TT);
|
|
}
|
|
arf_mul(D, D, T, bp, ARF_RND_UP);
|
|
arf_div_ui(err, D, N + 1, bp, ARF_RND_UP);
|
|
}
|
|
else
|
|
{
|
|
N = 1;
|
|
arf_pos_inf(err);
|
|
result = ARB_CALC_NO_CONVERGENCE;
|
|
}
|
|
|
|
if (arb_calc_verbose)
|
|
{
|
|
flint_printf("N = %wd; bound: ", N); arf_printd(err, 15); flint_printf("\n");
|
|
flint_printf("R: "); arf_printd(R, 15); flint_printf("\n");
|
|
flint_printf("C: "); arf_printd(C, 15); flint_printf("\n");
|
|
flint_printf("X: "); arf_printd(X, 15); flint_printf("\n");
|
|
}
|
|
|
|
arb_clear(cbound);
|
|
arb_clear(xbound);
|
|
arb_clear(rbound);
|
|
arf_clear(C);
|
|
arf_clear(D);
|
|
arf_clear(R);
|
|
arf_clear(X);
|
|
arf_clear(T);
|
|
}
|
|
|
|
/* evaluate Taylor polynomial */
|
|
taylor_poly = _acb_vec_init(N + 1);
|
|
func(taylor_poly, m, param, N, prec);
|
|
_acb_poly_integral(taylor_poly, taylor_poly, N + 1, prec);
|
|
_acb_poly_evaluate(y2, taylor_poly, N + 1, x, prec);
|
|
acb_neg(x, x);
|
|
_acb_poly_evaluate(y1, taylor_poly, N + 1, x, prec);
|
|
acb_neg(x, x);
|
|
|
|
/* add truncation error */
|
|
arb_add_error_arf(acb_realref(y1), err);
|
|
arb_add_error_arf(acb_imagref(y1), err);
|
|
arb_add_error_arf(acb_realref(y2), err);
|
|
arb_add_error_arf(acb_imagref(y2), err);
|
|
|
|
acb_add(sum, sum, y2, prec);
|
|
acb_sub(sum, sum, y1, prec);
|
|
|
|
if (arb_calc_verbose)
|
|
{
|
|
flint_printf("values: ");
|
|
acb_printd(y1, 15); flint_printf(" ");
|
|
acb_printd(y2, 15); flint_printf("\n");
|
|
}
|
|
|
|
_acb_vec_clear(taylor_poly, N + 1);
|
|
|
|
if (result == ARB_CALC_NO_CONVERGENCE)
|
|
break;
|
|
}
|
|
|
|
acb_set(res, sum);
|
|
|
|
acb_clear(delta);
|
|
acb_clear(m);
|
|
acb_clear(x);
|
|
acb_clear(y1);
|
|
acb_clear(y2);
|
|
acb_clear(sum);
|
|
arf_clear(err);
|
|
|
|
return result;
|
|
}
|
|
|