arb/arf/set_round_mpn.c
2020-06-22 23:48:09 +02:00

168 lines
4.5 KiB
C

/*
Copyright (C) 2014 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "arf.h"
int
_arf_set_round_mpn(arf_t y, slong * exp_shift, mp_srcptr x, mp_size_t xn,
int sgnbit, slong prec, arf_rnd_t rnd)
{
unsigned int leading;
flint_bitcnt_t exp, bc, val, val_bits;
mp_size_t yn, val_limbs;
mp_ptr yptr;
mp_limb_t t;
int increment, inexact;
/* Compute the total bit length of x. */
count_leading_zeros(leading, x[xn - 1]);
exp = xn * FLINT_BITS - leading;
/* Set exponent. */
*exp_shift = -(slong) leading;
/* Find first nonzero bit. */
val_limbs = 0;
while (x[val_limbs] == 0)
val_limbs++;
count_trailing_zeros(val_bits, x[val_limbs]);
val = val_limbs * FLINT_BITS + val_bits;
if (exp - val <= prec)
{
inexact = 0;
increment = 0;
}
else
{
inexact = 1;
/* Limb and bit of the truncation point. */
val_limbs = (exp - prec) / FLINT_BITS;
val_bits = (exp - prec) % FLINT_BITS;
if (rnd == ARF_RND_DOWN)
{
increment = 0;
}
else if (rnd == ARF_RND_NEAR)
{
/* If exactly one excess bit, there is a tie; the rounding
direction is determined by the bit to the left of the
truncation point. */
if (exp - val - 1 == prec)
{
increment = (x[val_limbs] >> val_bits) & 1;
}
else
{
/* The bit to the right of the truncation point determines
the rounding direction. */
mp_size_t exc_limbs = (exp - prec - 1) / FLINT_BITS;
flint_bitcnt_t exc_bits = (exp - prec - 1) % FLINT_BITS;
increment = (x[exc_limbs] >> exc_bits) & 1;
}
}
else
{
if (rnd == ARF_RND_UP)
increment = 1;
else if (rnd == ARF_RND_FLOOR)
increment = sgnbit;
else
increment = !sgnbit;
}
if (!increment)
{
/* Find first nonzero bit from the truncation point. */
t = x[val_limbs] & (LIMB_ONES << val_bits);
while (t == 0)
{
val_limbs++;
t = x[val_limbs];
}
count_trailing_zeros(val_bits, t);
val = val_limbs * FLINT_BITS + val_bits;
}
else
{
/* Find first zero bit from the truncation point */
t = (~x[val_limbs]) & (LIMB_ONES << val_bits);
while (t == 0)
{
val_limbs++;
if (val_limbs < xn)
t = ~x[val_limbs];
else /* The array is all ones up to the highest limb. */
{
val_bits = 0;
goto END_SCAN1;
}
}
count_trailing_zeros(val_bits, t);
END_SCAN1:
val = val_limbs * FLINT_BITS + val_bits;
/* Overflow to next power of two (unlikely). */
if (val == exp)
{
exp_shift[0]++;
ARF_DEMOTE(y);
ARF_NOPTR_D(y)[0] = LIMB_TOP;
ARF_XSIZE(y) = ARF_MAKE_XSIZE(1, sgnbit);
return 1;
}
}
}
/* Now copy the result to destination. */
x += val_limbs;
xn -= val_limbs;
bc = exp - val;
yn = (bc + FLINT_BITS - 1) / FLINT_BITS;
ARF_GET_MPN_WRITE(yptr, yn, y);
ARF_XSIZE(y) |= sgnbit;
if (leading == 0)
{
flint_mpn_copyi(yptr, x, xn);
}
else if (xn == yn)
{
mpn_lshift(yptr, x, yn, leading);
}
else
{
mpn_lshift(yptr, x + 1, yn, leading);
yptr[0] |= (x[0] >> (FLINT_BITS - leading));
}
if (increment)
{
/* Mask off bits from the last limb. */
yptr[0] &= LIMB_ONES << (yn * FLINT_BITS - bc);
/* Increment (no carry propagation). */
yptr[0] += LIMB_ONE << (yn * FLINT_BITS - bc);
}
else if (inexact && prec < yn * FLINT_BITS)
{
/* Mask off bits from the last limb. */
yptr[0] &= LIMB_ONES << (yn * FLINT_BITS - prec);
}
return inexact;
}