mirror of
https://github.com/vale981/arb
synced 2025-03-05 09:21:38 -05:00
170 lines
5.5 KiB
C
170 lines
5.5 KiB
C
/*
|
|
Copyright (C) 2014 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_modular.h"
|
|
|
|
#define NUM_TESTS 6
|
|
#define EPS 1e-13
|
|
|
|
/* z, tau, p(z, tau) checked with Mathematica:
|
|
N[{z, tau, WeierstrassP[z, WeierstrassInvariants[{1, tau}/2]]}, 20] */
|
|
const double testdata[NUM_TESTS][6] = {
|
|
{ 1.4142135623730950488, 1.7320508075688772935,
|
|
2.2360679774997896964, 2.6457513110645905905,
|
|
-3.3440423818409419071, 0.1143522489547216990 },
|
|
{ -3.0, -2.0, -7.0, 3.0, -3.3640051024505898616, 0.0 },
|
|
{ 0.1, 0.0, 0.6, 0.2, 99.322596953997138519, 2.258818666973309701 },
|
|
{ 0.0, 0.1, 0.6, 0.2, -99.322596953997138519, -2.258818666973309701 },
|
|
{ 0.5, 0.0, 0.333333333333333333, 20.0, 6.5797362673929057459, 0.0 },
|
|
{ 3.6666666666666667, 2014.0, -3.1415926535897932385, 0.1,
|
|
-36.988356711748296440, -102.242185767588750178 }
|
|
};
|
|
|
|
static void
|
|
acb_set_dddd(acb_t z, double a, double ar, double b, double br)
|
|
{
|
|
arf_set_d(arb_midref(acb_realref(z)), a);
|
|
mag_set_d(arb_radref(acb_realref(z)), ar);
|
|
arf_set_d(arb_midref(acb_imagref(z)), b);
|
|
mag_set_d(arb_radref(acb_imagref(z)), br);
|
|
}
|
|
|
|
int main()
|
|
{
|
|
slong iter;
|
|
flint_rand_t state;
|
|
|
|
flint_printf("elliptic_p....");
|
|
fflush(stdout);
|
|
|
|
flint_randinit(state);
|
|
|
|
/* check test values */
|
|
for (iter = 0; iter < 100 * arb_test_multiplier(); iter++)
|
|
{
|
|
slong i;
|
|
|
|
acb_t z, tau, p1, p2;
|
|
|
|
acb_init(z);
|
|
acb_init(tau);
|
|
acb_init(p1);
|
|
acb_init(p2);
|
|
|
|
for (i = 0; i < NUM_TESTS; i++)
|
|
{
|
|
acb_set_dddd(z, testdata[i][0], 0.0, testdata[i][1], 0.0);
|
|
acb_set_dddd(tau, testdata[i][2], 0.0, testdata[i][3], 0.0);
|
|
if (i == NUM_TESTS - 1) /* sensitive to rounding errors in doubles */
|
|
acb_set_dddd(p2, testdata[i][4], 1e-6, testdata[i][5], 1e-6);
|
|
else
|
|
acb_set_dddd(p2, testdata[i][4], EPS, testdata[i][5], EPS);
|
|
|
|
acb_modular_elliptic_p(p1, z, tau, 2 + n_randint(state, 1000));
|
|
|
|
if (!acb_overlaps(p1, p2))
|
|
{
|
|
flint_printf("FAIL (test value)\n");
|
|
flint_printf("tau = "); acb_printd(tau, 15); flint_printf("\n\n");
|
|
flint_printf("z = "); acb_printd(z, 15); flint_printf("\n\n");
|
|
flint_printf("p1 = "); acb_printd(p1, 15); flint_printf("\n\n");
|
|
flint_printf("p2 = "); acb_printd(p2, 15); flint_printf("\n\n");
|
|
flint_abort();
|
|
}
|
|
|
|
acb_modular_elliptic_p(p2, z, tau, 2 + n_randint(state, 1000));
|
|
|
|
if (!acb_overlaps(p1, p2))
|
|
{
|
|
flint_printf("FAIL (test value 2)\n");
|
|
flint_printf("tau = "); acb_printd(tau, 15); flint_printf("\n\n");
|
|
flint_printf("z = "); acb_printd(z, 15); flint_printf("\n\n");
|
|
flint_printf("p1 = "); acb_printd(p1, 15); flint_printf("\n\n");
|
|
flint_printf("p2 = "); acb_printd(p2, 15); flint_printf("\n\n");
|
|
flint_abort();
|
|
}
|
|
}
|
|
|
|
acb_clear(z);
|
|
acb_clear(tau);
|
|
acb_clear(p1);
|
|
acb_clear(p2);
|
|
}
|
|
|
|
/* Test periods */
|
|
for (iter = 0; iter < 2000 * arb_test_multiplier(); iter++)
|
|
{
|
|
acb_t tau, z1, z2, p1, p2;
|
|
slong m, n, e0, prec0, prec1, prec2;
|
|
|
|
acb_init(tau);
|
|
acb_init(z1);
|
|
acb_init(z2);
|
|
acb_init(p1);
|
|
acb_init(p2);
|
|
|
|
e0 = 1 + n_randint(state, 10);
|
|
prec0 = 2 + n_randint(state, 1000);
|
|
prec1 = 2 + n_randint(state, 1000);
|
|
prec2 = 2 + n_randint(state, 1000);
|
|
|
|
acb_randtest(tau, state, prec0, e0);
|
|
if (arf_sgn(arb_midref(acb_imagref(tau))) < 0)
|
|
acb_neg(tau, tau);
|
|
|
|
acb_randtest(z1, state, prec0, e0);
|
|
acb_randtest(p1, state, prec0, e0);
|
|
acb_randtest(p2, state, prec0, e0);
|
|
|
|
/* z2 = z1 + m + n*tau */
|
|
m = n_randint(state, 10);
|
|
n = n_randint(state, 10);
|
|
acb_add_ui(z2, z1, m, prec0);
|
|
acb_addmul_ui(z2, tau, n, prec0);
|
|
|
|
acb_modular_elliptic_p(p1, z1, tau, prec1);
|
|
acb_modular_elliptic_p(p2, z2, tau, prec2);
|
|
|
|
if (!acb_overlaps(p1, p2))
|
|
{
|
|
flint_printf("FAIL (overlap)\n");
|
|
flint_printf("tau = "); acb_printd(tau, 15); flint_printf("\n\n");
|
|
flint_printf("z1 = "); acb_printd(z1, 15); flint_printf("\n\n");
|
|
flint_printf("z2 = "); acb_printd(z2, 15); flint_printf("\n\n");
|
|
flint_printf("p1 = "); acb_printd(p1, 15); flint_printf("\n\n");
|
|
flint_printf("p2 = "); acb_printd(p2, 15); flint_printf("\n\n");
|
|
flint_abort();
|
|
}
|
|
|
|
acb_modular_elliptic_p(z1, z1, tau, prec1);
|
|
|
|
if (!acb_overlaps(z1, p1))
|
|
{
|
|
flint_printf("FAIL (aliasing)\n");
|
|
flint_printf("tau = "); acb_printd(tau, 15); flint_printf("\n\n");
|
|
flint_printf("z1 = "); acb_printd(z1, 15); flint_printf("\n\n");
|
|
flint_printf("p1 = "); acb_printd(p1, 15); flint_printf("\n\n");
|
|
flint_abort();
|
|
}
|
|
|
|
acb_clear(tau);
|
|
acb_clear(z1);
|
|
acb_clear(z2);
|
|
acb_clear(p1);
|
|
acb_clear(p2);
|
|
}
|
|
|
|
flint_randclear(state);
|
|
flint_cleanup();
|
|
flint_printf("PASS\n");
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|