arb/acb_modular/test/t-elliptic_p.c

170 lines
5.5 KiB
C

/*
Copyright (C) 2014 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_modular.h"
#define NUM_TESTS 6
#define EPS 1e-13
/* z, tau, p(z, tau) checked with Mathematica:
N[{z, tau, WeierstrassP[z, WeierstrassInvariants[{1, tau}/2]]}, 20] */
const double testdata[NUM_TESTS][6] = {
{ 1.4142135623730950488, 1.7320508075688772935,
2.2360679774997896964, 2.6457513110645905905,
-3.3440423818409419071, 0.1143522489547216990 },
{ -3.0, -2.0, -7.0, 3.0, -3.3640051024505898616, 0.0 },
{ 0.1, 0.0, 0.6, 0.2, 99.322596953997138519, 2.258818666973309701 },
{ 0.0, 0.1, 0.6, 0.2, -99.322596953997138519, -2.258818666973309701 },
{ 0.5, 0.0, 0.333333333333333333, 20.0, 6.5797362673929057459, 0.0 },
{ 3.6666666666666667, 2014.0, -3.1415926535897932385, 0.1,
-36.988356711748296440, -102.242185767588750178 }
};
static void
acb_set_dddd(acb_t z, double a, double ar, double b, double br)
{
arf_set_d(arb_midref(acb_realref(z)), a);
mag_set_d(arb_radref(acb_realref(z)), ar);
arf_set_d(arb_midref(acb_imagref(z)), b);
mag_set_d(arb_radref(acb_imagref(z)), br);
}
int main()
{
slong iter;
flint_rand_t state;
flint_printf("elliptic_p....");
fflush(stdout);
flint_randinit(state);
/* check test values */
for (iter = 0; iter < 100 * arb_test_multiplier(); iter++)
{
slong i;
acb_t z, tau, p1, p2;
acb_init(z);
acb_init(tau);
acb_init(p1);
acb_init(p2);
for (i = 0; i < NUM_TESTS; i++)
{
acb_set_dddd(z, testdata[i][0], 0.0, testdata[i][1], 0.0);
acb_set_dddd(tau, testdata[i][2], 0.0, testdata[i][3], 0.0);
if (i == NUM_TESTS - 1) /* sensitive to rounding errors in doubles */
acb_set_dddd(p2, testdata[i][4], 1e-6, testdata[i][5], 1e-6);
else
acb_set_dddd(p2, testdata[i][4], EPS, testdata[i][5], EPS);
acb_modular_elliptic_p(p1, z, tau, 2 + n_randint(state, 1000));
if (!acb_overlaps(p1, p2))
{
flint_printf("FAIL (test value)\n");
flint_printf("tau = "); acb_printd(tau, 15); flint_printf("\n\n");
flint_printf("z = "); acb_printd(z, 15); flint_printf("\n\n");
flint_printf("p1 = "); acb_printd(p1, 15); flint_printf("\n\n");
flint_printf("p2 = "); acb_printd(p2, 15); flint_printf("\n\n");
flint_abort();
}
acb_modular_elliptic_p(p2, z, tau, 2 + n_randint(state, 1000));
if (!acb_overlaps(p1, p2))
{
flint_printf("FAIL (test value 2)\n");
flint_printf("tau = "); acb_printd(tau, 15); flint_printf("\n\n");
flint_printf("z = "); acb_printd(z, 15); flint_printf("\n\n");
flint_printf("p1 = "); acb_printd(p1, 15); flint_printf("\n\n");
flint_printf("p2 = "); acb_printd(p2, 15); flint_printf("\n\n");
flint_abort();
}
}
acb_clear(z);
acb_clear(tau);
acb_clear(p1);
acb_clear(p2);
}
/* Test periods */
for (iter = 0; iter < 2000 * arb_test_multiplier(); iter++)
{
acb_t tau, z1, z2, p1, p2;
slong m, n, e0, prec0, prec1, prec2;
acb_init(tau);
acb_init(z1);
acb_init(z2);
acb_init(p1);
acb_init(p2);
e0 = 1 + n_randint(state, 10);
prec0 = 2 + n_randint(state, 1000);
prec1 = 2 + n_randint(state, 1000);
prec2 = 2 + n_randint(state, 1000);
acb_randtest(tau, state, prec0, e0);
if (arf_sgn(arb_midref(acb_imagref(tau))) < 0)
acb_neg(tau, tau);
acb_randtest(z1, state, prec0, e0);
acb_randtest(p1, state, prec0, e0);
acb_randtest(p2, state, prec0, e0);
/* z2 = z1 + m + n*tau */
m = n_randint(state, 10);
n = n_randint(state, 10);
acb_add_ui(z2, z1, m, prec0);
acb_addmul_ui(z2, tau, n, prec0);
acb_modular_elliptic_p(p1, z1, tau, prec1);
acb_modular_elliptic_p(p2, z2, tau, prec2);
if (!acb_overlaps(p1, p2))
{
flint_printf("FAIL (overlap)\n");
flint_printf("tau = "); acb_printd(tau, 15); flint_printf("\n\n");
flint_printf("z1 = "); acb_printd(z1, 15); flint_printf("\n\n");
flint_printf("z2 = "); acb_printd(z2, 15); flint_printf("\n\n");
flint_printf("p1 = "); acb_printd(p1, 15); flint_printf("\n\n");
flint_printf("p2 = "); acb_printd(p2, 15); flint_printf("\n\n");
flint_abort();
}
acb_modular_elliptic_p(z1, z1, tau, prec1);
if (!acb_overlaps(z1, p1))
{
flint_printf("FAIL (aliasing)\n");
flint_printf("tau = "); acb_printd(tau, 15); flint_printf("\n\n");
flint_printf("z1 = "); acb_printd(z1, 15); flint_printf("\n\n");
flint_printf("p1 = "); acb_printd(p1, 15); flint_printf("\n\n");
flint_abort();
}
acb_clear(tau);
acb_clear(z1);
acb_clear(z2);
acb_clear(p1);
acb_clear(p2);
}
flint_randclear(state);
flint_cleanup();
flint_printf("PASS\n");
return EXIT_SUCCESS;
}