mirror of
https://github.com/vale981/arb
synced 2025-03-05 09:21:38 -05:00

This will allow us to not loose the julia session on error. See also https://github.com/wbhart/flint2/pull/243
312 lines
8.6 KiB
C
312 lines
8.6 KiB
C
/*
|
|
Copyright (C) 2012 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_mat.h"
|
|
|
|
void
|
|
_acb_mat_init_randtest(acb_mat_t mat, slong r, slong c, flint_rand_t state)
|
|
{
|
|
acb_mat_init(mat, r, c);
|
|
acb_mat_randtest(mat, state, 2 + n_randint(state, 200), 10);
|
|
}
|
|
|
|
void
|
|
_acb_mat_nprintd(const char * name, acb_mat_t mat)
|
|
{
|
|
flint_printf("%s = ", name);
|
|
acb_mat_printd(mat, 15);
|
|
flint_printf("\n\n");
|
|
}
|
|
|
|
int main()
|
|
{
|
|
slong iter;
|
|
flint_rand_t state;
|
|
|
|
flint_printf("mul....");
|
|
fflush(stdout);
|
|
|
|
flint_randinit(state);
|
|
|
|
for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
|
|
{
|
|
slong m, n, k, qbits1, qbits2, rbits1, rbits2, rbits3;
|
|
fmpq_mat_t A, B, C;
|
|
acb_mat_t a, b, c, d;
|
|
|
|
qbits1 = 2 + n_randint(state, 200);
|
|
qbits2 = 2 + n_randint(state, 200);
|
|
rbits1 = 2 + n_randint(state, 200);
|
|
rbits2 = 2 + n_randint(state, 200);
|
|
rbits3 = 2 + n_randint(state, 200);
|
|
|
|
m = n_randint(state, 10);
|
|
n = n_randint(state, 10);
|
|
k = n_randint(state, 10);
|
|
|
|
fmpq_mat_init(A, m, n);
|
|
fmpq_mat_init(B, n, k);
|
|
fmpq_mat_init(C, m, k);
|
|
|
|
acb_mat_init(a, m, n);
|
|
acb_mat_init(b, n, k);
|
|
acb_mat_init(c, m, k);
|
|
acb_mat_init(d, m, k);
|
|
|
|
fmpq_mat_randtest(A, state, qbits1);
|
|
fmpq_mat_randtest(B, state, qbits2);
|
|
fmpq_mat_mul(C, A, B);
|
|
|
|
acb_mat_set_fmpq_mat(a, A, rbits1);
|
|
acb_mat_set_fmpq_mat(b, B, rbits2);
|
|
acb_mat_mul(c, a, b, rbits3);
|
|
|
|
if (!acb_mat_contains_fmpq_mat(c, C))
|
|
{
|
|
flint_printf("FAIL\n\n");
|
|
flint_printf("m = %wd, n = %wd, k = %wd, bits3 = %wd\n", m, n, k, rbits3);
|
|
|
|
flint_printf("A = "); fmpq_mat_print(A); flint_printf("\n\n");
|
|
flint_printf("B = "); fmpq_mat_print(B); flint_printf("\n\n");
|
|
flint_printf("C = "); fmpq_mat_print(C); flint_printf("\n\n");
|
|
|
|
flint_printf("a = "); acb_mat_printd(a, 15); flint_printf("\n\n");
|
|
flint_printf("b = "); acb_mat_printd(b, 15); flint_printf("\n\n");
|
|
flint_printf("c = "); acb_mat_printd(c, 15); flint_printf("\n\n");
|
|
|
|
flint_abort();
|
|
}
|
|
|
|
/* test aliasing with a */
|
|
if (acb_mat_nrows(a) == acb_mat_nrows(c) &&
|
|
acb_mat_ncols(a) == acb_mat_ncols(c))
|
|
{
|
|
acb_mat_set(d, a);
|
|
acb_mat_mul(d, d, b, rbits3);
|
|
if (!acb_mat_equal(d, c))
|
|
{
|
|
flint_printf("FAIL (aliasing 1)\n\n");
|
|
flint_abort();
|
|
}
|
|
}
|
|
|
|
/* test aliasing with b */
|
|
if (acb_mat_nrows(b) == acb_mat_nrows(c) &&
|
|
acb_mat_ncols(b) == acb_mat_ncols(c))
|
|
{
|
|
acb_mat_set(d, b);
|
|
acb_mat_mul(d, a, d, rbits3);
|
|
if (!acb_mat_equal(d, c))
|
|
{
|
|
flint_printf("FAIL (aliasing 2)\n\n");
|
|
flint_abort();
|
|
}
|
|
}
|
|
|
|
fmpq_mat_clear(A);
|
|
fmpq_mat_clear(B);
|
|
fmpq_mat_clear(C);
|
|
|
|
acb_mat_clear(a);
|
|
acb_mat_clear(b);
|
|
acb_mat_clear(c);
|
|
acb_mat_clear(d);
|
|
}
|
|
|
|
/* check algebraic properties like associativity and distributivity */
|
|
for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++)
|
|
{
|
|
slong m, n, k, l;
|
|
slong rbits;
|
|
acb_mat_t a, b, c, d, ab, ac, bd, cd, s;
|
|
|
|
rbits = 2 + n_randint(state, 200);
|
|
|
|
m = n_randint(state, 10);
|
|
n = n_randint(state, 10);
|
|
k = n_randint(state, 10);
|
|
l = n_randint(state, 10);
|
|
|
|
_acb_mat_init_randtest(a, m, n, state);
|
|
_acb_mat_init_randtest(b, n, k, state);
|
|
_acb_mat_init_randtest(c, n, k, state);
|
|
_acb_mat_init_randtest(d, k, l, state);
|
|
|
|
acb_mat_init(ab, m, k);
|
|
acb_mat_init(ac, m, k);
|
|
acb_mat_init(bd, n, l);
|
|
acb_mat_init(cd, n, l);
|
|
acb_mat_init(s, n, k);
|
|
|
|
acb_mat_mul(ab, a, b, rbits);
|
|
acb_mat_mul(ac, a, c, rbits);
|
|
acb_mat_mul(bd, b, d, rbits);
|
|
acb_mat_mul(cd, c, d, rbits);
|
|
acb_mat_add(s, b, c, rbits);
|
|
|
|
/* check associativity of multiplication */
|
|
/* (A*B)*D = A*(B*D) */
|
|
{
|
|
acb_mat_t lhs, rhs;
|
|
|
|
acb_mat_init(lhs, m, l);
|
|
acb_mat_init(rhs, m, l);
|
|
|
|
acb_mat_mul(lhs, ab, d, rbits);
|
|
acb_mat_mul(rhs, a, bd, rbits);
|
|
|
|
if (!acb_mat_overlaps(lhs, rhs))
|
|
{
|
|
flint_printf("FAIL\n\n");
|
|
flint_printf("m, n, k, l = %wd, %wd, %wd, %wd\n", m, n, k, l);
|
|
flint_printf("rbits = %wd\n", rbits);
|
|
|
|
_acb_mat_nprintd("a", a);
|
|
_acb_mat_nprintd("b", b);
|
|
_acb_mat_nprintd("d", d);
|
|
_acb_mat_nprintd("(a*b)*d", lhs);
|
|
_acb_mat_nprintd("a*(b*d)", rhs);
|
|
|
|
flint_abort();
|
|
}
|
|
|
|
acb_mat_clear(lhs);
|
|
acb_mat_clear(rhs);
|
|
}
|
|
|
|
/* check left distributivity of multiplication over addition */
|
|
/* A*(B + C) = A*B + A*C */
|
|
{
|
|
acb_mat_t lhs, rhs;
|
|
|
|
acb_mat_init(lhs, m, k);
|
|
acb_mat_init(rhs, m, k);
|
|
|
|
acb_mat_mul(lhs, a, s, rbits);
|
|
acb_mat_add(rhs, ab, ac, rbits);
|
|
|
|
if (!acb_mat_overlaps(lhs, rhs))
|
|
{
|
|
flint_printf("FAIL\n\n");
|
|
flint_printf("m, n, k, l = %wd, %wd, %wd, %wd\n", m, n, k, l);
|
|
flint_printf("rbits = %wd\n", rbits);
|
|
|
|
_acb_mat_nprintd("a", a);
|
|
_acb_mat_nprintd("b", b);
|
|
_acb_mat_nprintd("c", c);
|
|
_acb_mat_nprintd("a*(b + c)", lhs);
|
|
_acb_mat_nprintd("a*b + b*c", rhs);
|
|
|
|
flint_abort();
|
|
}
|
|
|
|
acb_mat_clear(lhs);
|
|
acb_mat_clear(rhs);
|
|
}
|
|
|
|
/* check right distributivity of multiplication over addition */
|
|
/* (B + C)*D = B*D + C*D */
|
|
{
|
|
acb_mat_t lhs, rhs;
|
|
|
|
acb_mat_init(lhs, n, l);
|
|
acb_mat_init(rhs, n, l);
|
|
|
|
acb_mat_mul(lhs, s, d, rbits);
|
|
acb_mat_add(rhs, bd, cd, rbits);
|
|
|
|
if (!acb_mat_overlaps(lhs, rhs))
|
|
{
|
|
flint_printf("FAIL\n\n");
|
|
flint_printf("m, n, k, l = %wd, %wd, %wd, %wd\n", m, n, k, l);
|
|
flint_printf("rbits = %wd\n", rbits);
|
|
|
|
_acb_mat_nprintd("b", b);
|
|
_acb_mat_nprintd("c", c);
|
|
_acb_mat_nprintd("d", d);
|
|
_acb_mat_nprintd("(b + c)*d", lhs);
|
|
_acb_mat_nprintd("b*d + c*d", rhs);
|
|
|
|
flint_abort();
|
|
}
|
|
|
|
acb_mat_clear(lhs);
|
|
acb_mat_clear(rhs);
|
|
}
|
|
|
|
/* check left multiplicative identity I*D = D */
|
|
{
|
|
acb_mat_t one, lhs;
|
|
|
|
acb_mat_init(one, k, k);
|
|
acb_mat_init(lhs, k, l);
|
|
|
|
acb_mat_one(one);
|
|
acb_mat_mul(lhs, one, d, rbits);
|
|
|
|
if (!acb_mat_contains(lhs, d))
|
|
{
|
|
flint_printf("FAIL\n\n");
|
|
flint_printf("k = %wd, l = %wd\n", k, l);
|
|
flint_printf("rbits = %wd\n", rbits);
|
|
|
|
_acb_mat_nprintd("identity * d", lhs);
|
|
_acb_mat_nprintd("d", d);
|
|
|
|
flint_abort();
|
|
}
|
|
|
|
acb_mat_clear(one);
|
|
acb_mat_clear(lhs);
|
|
}
|
|
|
|
/* check right multiplicative identity A*I = A */
|
|
{
|
|
acb_mat_t one, lhs;
|
|
|
|
acb_mat_init(one, n, n);
|
|
acb_mat_init(lhs, m, n);
|
|
|
|
acb_mat_one(one);
|
|
acb_mat_mul(lhs, a, one, rbits);
|
|
|
|
if (!acb_mat_contains(lhs, a))
|
|
{
|
|
flint_printf("FAIL\n\n");
|
|
flint_printf("m = %wd, n = %wd\n", m, n);
|
|
flint_printf("rbits = %wd\n", rbits);
|
|
|
|
_acb_mat_nprintd("a * identity", lhs);
|
|
_acb_mat_nprintd("a", a);
|
|
|
|
flint_abort();
|
|
}
|
|
|
|
acb_mat_clear(one);
|
|
acb_mat_clear(lhs);
|
|
}
|
|
|
|
acb_mat_clear(a);
|
|
acb_mat_clear(b);
|
|
acb_mat_clear(c);
|
|
acb_mat_clear(d);
|
|
acb_mat_clear(ab);
|
|
acb_mat_clear(ac);
|
|
acb_mat_clear(bd);
|
|
acb_mat_clear(cd);
|
|
acb_mat_clear(s);
|
|
}
|
|
|
|
flint_randclear(state);
|
|
flint_cleanup();
|
|
flint_printf("PASS\n");
|
|
return EXIT_SUCCESS;
|
|
}
|