arb/acb_mat/test/t-eig_simple.c
2020-09-20 23:17:34 -05:00

303 lines
9.8 KiB
C

/*
Copyright (C) 2018 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_mat.h"
int main()
{
slong iter;
flint_rand_t state;
flint_printf("eig_simple....");
fflush(stdout);
flint_randinit(state);
for (iter = 0; iter < 5000 * arb_test_multiplier(); iter++)
{
acb_mat_t A, L, R, LAR, D;
acb_ptr E, F;
acb_t b;
slong i, j, n, prec, count, count2;
int result, algorithm;
n = n_randint(state, 8);
prec = 2 + n_randint(state, 200);
algorithm = n_randint(state, 3);
acb_mat_init(A, n, n);
acb_mat_init(L, n, n);
acb_mat_init(R, n, n);
acb_mat_init(LAR, n, n);
acb_mat_init(D, n, n);
acb_init(b);
E = _acb_vec_init(n);
F = _acb_vec_init(n);
if (n_randint(state, 10) != 0)
{
for (i = 0; i < n; i++)
acb_randtest(E + i, state, prec, 2);
}
else
{
/* Randomly repeat eigenvalues. */
for (i = 0; i < n; i++)
{
if (i == 0 || n_randint(state, 2))
acb_randtest(E + i, state, prec, 2);
else
acb_set(E + i, E + n_randint(state, i));
}
}
if (n_randint(state, 2))
{
for (i = 0; i < n; i++)
acb_get_mid(E + i, E + i);
}
acb_mat_randtest_eig(A, state, E, prec);
acb_mat_approx_eig_qr(F, NULL, R, A, NULL, 0, prec);
/* Perturb F further. */
if (n_randint(state, 10) == 0)
{
for (i = 0; i < n; i++)
{
acb_randtest(b, state, prec, 1);
acb_mul_2exp_si(b, b, -n_randint(state, prec));
acb_add(F + i, F + i, b, prec);
}
}
/* Perturb R further. */
if (n_randint(state, 10) == 0)
{
j = n_randint(state, n);
for (i = 0; i < n; i++)
{
acb_randtest(b, state, prec, 1);
acb_mul_2exp_si(b, b, -10 - n_randint(state, prec));
acb_add(acb_mat_entry(R, i, j), acb_mat_entry(R, i, j), b, prec);
}
}
if (n_randint(state, 2))
{
if (algorithm == 0)
result = acb_mat_eig_simple(F, L, R, A, E, R, prec);
else if (algorithm == 1)
result = acb_mat_eig_simple_rump(F, L, R, A, E, R, prec);
else
result = acb_mat_eig_simple_vdhoeven_mourrain(F, L, R, A, E, R, prec);
}
else
{
int r1, r2;
if (algorithm == 0)
{
r1 = acb_mat_eig_simple(F, L, NULL, A, E, R, prec);
r2 = acb_mat_eig_simple(F, NULL, R, A, E, R, prec);
}
else if (algorithm == 1)
{
r1 = acb_mat_eig_simple_rump(F, L, NULL, A, E, R, prec);
r2 = acb_mat_eig_simple_rump(F, NULL, R, A, E, R, prec);
}
else
{
r1 = acb_mat_eig_simple_vdhoeven_mourrain(F, L, NULL, A, E, R, prec);
r2 = acb_mat_eig_simple_vdhoeven_mourrain(F, NULL, R, A, E, R, prec);
}
result = n_randint(state, 2) ? r1 : r2;
}
acb_mat_mul(LAR, L, A, prec);
acb_mat_mul(LAR, LAR, R, prec);
for (i = 0; i < n; i++)
acb_set(acb_mat_entry(D, i, i), F + i);
if (!acb_mat_overlaps(LAR, D))
{
flint_printf("FAIL: overlap\n\n");
flint_printf("algorithm = %d\n\n", algorithm);
flint_printf("A = \n"); acb_mat_printd(A, 20); flint_printf("\n\n");
flint_printf("R = \n"); acb_mat_printd(R, 20); flint_printf("\n\n");
flint_printf("L = \n"); acb_mat_printd(L, 20); flint_printf("\n\n");
flint_printf("D = \n"); acb_mat_printd(D, 20); flint_printf("\n\n");
flint_printf("LAR = \n"); acb_mat_printd(LAR, 20); flint_printf("\n\n");
flint_abort();
}
if (result)
{
for (i = 0; i < n; i++)
{
count = 0;
for (j = 0; j < n; j++)
count += acb_contains(F + i, E + j);
count2 = 0;
for (j = 0; j < n; j++)
count2 += acb_overlaps(F + i, E + j);
if (count != 1 || count2 != 1)
{
flint_printf("FAIL: count\n\n");
flint_printf("algorithm = %d\n\n", algorithm);
flint_printf("A = \n"); acb_mat_printd(A, 20); flint_printf("\n\n");
flint_printf("R = \n"); acb_mat_printd(R, 20); flint_printf("\n\n");
flint_printf("L = \n"); acb_mat_printd(L, 20); flint_printf("\n\n");
flint_printf("D = \n"); acb_mat_printd(D, 20); flint_printf("\n\n");
flint_printf("LAR = \n"); acb_mat_printd(LAR, 20); flint_printf("\n\n");
flint_printf("i = %wd, count = %wd, count2 = %wd\n\n", i, count, count2);
flint_abort();
}
}
}
acb_mat_clear(A);
acb_mat_clear(L);
acb_mat_clear(R);
acb_mat_clear(LAR);
acb_mat_clear(D);
acb_clear(b);
_acb_vec_clear(E, n);
_acb_vec_clear(F, n);
}
/* Test convergence, given companion matrices */
for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++)
{
acb_mat_t A, R, QC;
acb_ptr E;
acb_ptr roots;
fmpq_mat_t Q, Qinv;
acb_poly_t f;
slong i, j, n, prec, count, count2;
int algorithm, success;
algorithm = n_randint(state, 3);
n = n_randint(state, 10);
roots = _acb_vec_init(n);
E = _acb_vec_init(n);
acb_poly_init(f);
acb_mat_init(A, n, n);
acb_mat_init(R, n, n);
fmpq_mat_init(Q, n, n);
fmpq_mat_init(Qinv, n, n);
acb_mat_init(QC, n, n);
for (i = 0; i < n; i++)
{
new_root:
acb_randtest(roots + i, state, 2 + n_randint(state, 100), 4);
acb_get_mid(roots + i, roots + i);
for (j = 0; j < i; j++)
if (acb_equal(roots + i, roots + j))
goto new_root;
}
do {
fmpq_mat_randtest(Q, state, 2 + n_randint(state, 100));
} while (!fmpq_mat_inv(Qinv, Q));
success = 0;
for (prec = 32; !success; prec *= 2)
{
if (prec > 10000)
{
flint_printf("FAIL: unsuccessful, prec > 10000\n\n");
flint_printf("algorithm = %d, iter %wd\n\n", algorithm, iter);
flint_printf("A = \n"); acb_mat_printd(A, 20); flint_printf("\n\n");
flint_printf("R = \n"); acb_mat_printd(R, 20); flint_printf("\n\n");
flint_printf("roots = \n");
for (j = 0; j < n; j++)
{
acb_printd(roots + j, 20);
flint_printf("\n");
}
flint_abort();
}
acb_poly_product_roots(f, roots, n, prec);
acb_mat_companion(A, f, prec);
acb_mat_set_fmpq_mat(QC, Q, prec);
acb_mat_mul(A, A, QC, prec);
acb_mat_set_fmpq_mat(QC, Qinv, prec);
acb_mat_mul(A, QC, A, prec);
acb_mat_approx_eig_qr(E, NULL, R, A, NULL, 0, prec);
if (algorithm == 0)
success = acb_mat_eig_simple(E, NULL, NULL, A, E, R, prec);
else if (algorithm == 1)
success = acb_mat_eig_simple_rump(E, NULL, NULL, A, E, R, prec);
else
success = acb_mat_eig_simple_vdhoeven_mourrain(E, NULL, NULL, A, E, R, prec);
if (success)
{
for (i = 0; i < n; i++)
{
count = 0;
for (j = 0; j < n; j++)
count += acb_contains(E + i, roots + j);
count2 = 0;
for (j = 0; j < n; j++)
count2 += acb_overlaps(E + i, roots + j);
if (count != 1 || count2 != 1)
{
flint_printf("FAIL: count\n\n");
flint_printf("algorithm = %d\n\n", algorithm);
flint_printf("A = \n"); acb_mat_printd(A, 20); flint_printf("\n\n");
flint_printf("R = \n"); acb_mat_printd(R, 20); flint_printf("\n\n");
flint_printf("i = %wd, count = %wd, count2 = %wd\n\n", i, count, count2);
flint_printf("roots = \n");
for (j = 0; j < n; j++)
{
acb_printd(roots + j, 20);
flint_printf("\n");
}
flint_printf("E = \n");
for (j = 0; j < n; j++)
{
acb_printd(E + j, 20);
flint_printf("\n");
}
flint_abort();
}
}
}
}
fmpq_mat_clear(Q);
fmpq_mat_clear(Qinv);
acb_mat_clear(QC);
acb_mat_clear(A);
acb_mat_clear(R);
acb_poly_clear(f);
_acb_vec_clear(roots, n);
_acb_vec_clear(E, n);
}
flint_randclear(state);
flint_cleanup();
flint_printf("PASS\n");
return EXIT_SUCCESS;
}