arb/acb_mat/test/t-eig_enclosure_rump.c

247 lines
8 KiB
C

/*
Copyright (C) 2018 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_mat.h"
int main()
{
slong iter;
flint_rand_t state;
flint_printf("eig_enclosure_rump....");
fflush(stdout);
flint_randinit(state);
/* Test random matrices */
for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++)
{
acb_mat_t A, X, R, AR, J, RJ, Z, Z0;
acb_ptr E, F;
acb_t b, lambda;
slong i, j, h, k, n, iter2, prec, found_eigenvalue;
n = 1 + n_randint(state, 7);
prec = 2 + n_randint(state, 200);
acb_mat_init(A, n, n);
acb_mat_init(X, n, n);
acb_init(lambda);
acb_init(b);
E = _acb_vec_init(n);
F = _acb_vec_init(n);
if (n_randint(state, 2))
{
for (i = 0; i < n; i++)
acb_randtest(E + i, state, prec, 3);
}
else
{
/* Randomly repeat eigenvalues. */
for (i = 0; i < n; i++)
{
if (i == 0 || n_randint(state, 2))
acb_randtest(E + i, state, prec, 3);
else
acb_set(E + i, E + n_randint(state, i));
}
}
if (n_randint(state, 2))
{
for (i = 0; i < n; i++)
acb_get_mid(E + i, E + i);
}
acb_mat_randtest_eig(A, state, E, prec);
acb_mat_approx_eig_qr(F, NULL, X, A, NULL, 0, prec);
/* Perturb F further. */
if (n_randint(state, 4) == 0)
{
for (i = 0; i < n; i++)
{
acb_randtest(b, state, prec, 1);
acb_mul_2exp_si(b, b, -n_randint(state, prec));
acb_add(F + i, F + i, b, prec);
}
}
/* Perturb X further. */
if (n_randint(state, 10) == 0)
{
j = n_randint(state, n);
for (i = 0; i < n; i++)
{
acb_randtest(b, state, prec, 1);
acb_mul_2exp_si(b, b, -10 - n_randint(state, prec));
acb_add(acb_mat_entry(X, i, j), acb_mat_entry(X, i, j), b, prec);
}
}
/* Test k = 1 */
if (1)
{
acb_mat_init(R, n, 1);
acb_mat_init(AR, n, 1);
acb_mat_init(Z, n, 1);
acb_mat_init(Z0, n, 1);
for (j = 0; j < n; j++)
{
acb_set(lambda, F + j);
for (i = 0; i < n; i++)
acb_set(acb_mat_entry(R, i, 0), acb_mat_entry(X, i, j));
acb_mat_eig_enclosure_rump(lambda, NULL, R, A, lambda, R, prec);
acb_mat_mul(AR, A, R, prec);
acb_mat_neg(Z, AR);
acb_mat_scalar_addmul_acb(Z, R, lambda, prec);
if (!acb_mat_contains(Z, Z0))
{
flint_printf("FAIL: not containing zero!\n\n");
flint_printf("A = \n"); acb_mat_printd(A, 20); flint_printf("\n\n");
flint_printf("R = \n"); acb_mat_printd(R, 20); flint_printf("\n\n");
flint_printf("lambda = \n"); acb_printd(lambda, 20); flint_printf("\n\n");
flint_printf("Z = \n"); acb_mat_printd(Z, 20); flint_printf("\n\n");
flint_printf("E = \n");
for (j = 0; j < n; j++)
{
acb_printd(E + j, 20);
flint_printf("\n");
}
flint_abort();
}
found_eigenvalue = 0;
for (j = 0; j < n; j++)
{
if (acb_contains(lambda, E + j))
found_eigenvalue++;
}
if (found_eigenvalue == 0)
{
flint_printf("FAIL: eigenvalue not found\n\n");
flint_printf("A = \n"); acb_mat_printd(A, 20); flint_printf("\n\n");
flint_printf("R = \n"); acb_mat_printd(R, 20); flint_printf("\n\n");
flint_printf("lambda = \n"); acb_printd(lambda, 20); flint_printf("\n\n");
flint_printf("Z = \n"); acb_mat_printd(Z, 20); flint_printf("\n\n");
flint_printf("E = \n");
for (j = 0; j < n; j++)
{
acb_printd(E + j, 20);
flint_printf("\n");
}
flint_abort();
}
}
acb_mat_clear(R);
acb_mat_clear(AR);
acb_mat_clear(Z);
acb_mat_clear(Z0);
}
/* Test k > 1 */
for (iter2 = 1; iter2 < n; iter2++)
{
k = n_randint(state, n + 1);
k = FLINT_MAX(k, 2);
acb_mat_init(R, n, k);
acb_mat_init(AR, n, k);
acb_mat_init(Z, n, k);
acb_mat_init(Z0, n, k);
acb_mat_init(J, k, k);
acb_mat_init(RJ, n, k);
/* Random selection */
for (h = 0; h < k; h++)
{
j = n_randint(state, n);
if (h == 0 || n_randint(state, 2))
acb_set(lambda, F + j);
for (i = 0; i < n; i++)
acb_set(acb_mat_entry(R, i, h), acb_mat_entry(X, i, j));
}
acb_mat_eig_enclosure_rump(lambda, J, R, A, lambda, R, prec);
/* AY = YJ */
acb_mat_mul(AR, A, R, prec);
acb_mat_mul(RJ, R, J, prec);
acb_mat_sub(Z, AR, RJ, prec);
if (!acb_mat_contains(Z, Z0))
{
flint_printf("FAIL: not containing zero! (k = %wd, prec = %wd)\n\n", k, prec);
flint_printf("A = \n"); acb_mat_printd(A, 20); flint_printf("\n\n");
flint_printf("R = \n"); acb_mat_printd(R, 20); flint_printf("\n\n");
flint_printf("lambda = \n"); acb_printd(lambda, 20); flint_printf("\n\n");
flint_printf("J = \n"); acb_mat_printd(J, 20); flint_printf("\n\n");
flint_printf("Z = \n"); acb_mat_printd(Z, 20); flint_printf("\n\n");
flint_printf("E = \n");
for (j = 0; j < n; j++)
{
acb_printd(E + j, 20);
flint_printf("\n");
}
flint_abort();
}
found_eigenvalue = 0;
for (j = 0; j < n; j++)
{
if (acb_contains(lambda, E + j))
found_eigenvalue++;
}
if (found_eigenvalue < k)
{
flint_printf("FAIL: eigenvalue not found (k = %wd, found = %wd)\n\n", k, found_eigenvalue);
flint_printf("A = \n"); acb_mat_printd(A, 20); flint_printf("\n\n");
flint_printf("R = \n"); acb_mat_printd(R, 20); flint_printf("\n\n");
flint_printf("lambda = \n"); acb_printd(lambda, 20); flint_printf("\n\n");
flint_printf("Z = \n"); acb_mat_printd(Z, 20); flint_printf("\n\n");
flint_printf("E = \n");
for (j = 0; j < n; j++)
{
acb_printd(E + j, 20);
flint_printf("\n");
}
flint_abort();
}
acb_mat_clear(R);
acb_mat_clear(AR);
acb_mat_clear(Z);
acb_mat_clear(Z0);
acb_mat_clear(J);
acb_mat_clear(RJ);
}
acb_mat_clear(A);
acb_mat_clear(X);
acb_clear(lambda);
acb_clear(b);
_acb_vec_clear(E, n);
_acb_vec_clear(F, n);
}
flint_randclear(state);
flint_cleanup();
flint_printf("PASS\n");
return EXIT_SUCCESS;
}