mirror of
https://github.com/vale981/arb
synced 2025-03-04 17:01:40 -05:00
158 lines
3.2 KiB
C
158 lines
3.2 KiB
C
/*
|
|
Copyright (C) 2012 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_mat.h"
|
|
|
|
slong
|
|
acb_mat_gauss_partial(acb_mat_t A, slong prec)
|
|
{
|
|
acb_t e;
|
|
acb_ptr * a;
|
|
slong j, m, n, r, rank, row, col, sign;
|
|
|
|
m = A->r;
|
|
n = A->c;
|
|
a = A->rows;
|
|
rank = row = col = 0;
|
|
sign = 1;
|
|
|
|
acb_init(e);
|
|
|
|
while (row < m && col < n)
|
|
{
|
|
r = acb_mat_find_pivot_partial(A, row, m, col);
|
|
|
|
if (r == -1)
|
|
{
|
|
break;
|
|
}
|
|
else if (r != row)
|
|
{
|
|
acb_mat_swap_rows(A, NULL, row, r);
|
|
sign *= -1;
|
|
}
|
|
|
|
rank++;
|
|
|
|
for (j = row + 1; j < m; j++)
|
|
{
|
|
acb_div(e, a[j] + col, a[row] + col, prec);
|
|
acb_neg(e, e);
|
|
_acb_vec_scalar_addmul(a[j] + col + 1, a[row] + col + 1, n - col - 1, e, prec);
|
|
}
|
|
|
|
row++;
|
|
col++;
|
|
}
|
|
|
|
acb_clear(e);
|
|
|
|
return rank * sign;
|
|
}
|
|
|
|
void
|
|
acb_vec_get_arf_2norm_squared_bound(arf_t s, acb_srcptr vec, slong len, slong prec)
|
|
{
|
|
slong i;
|
|
arf_t t;
|
|
|
|
arf_init(t);
|
|
arf_zero(s);
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
arb_get_abs_ubound_arf(t, acb_realref(vec + i), prec);
|
|
arf_addmul(s, t, t, prec, ARF_RND_UP);
|
|
arb_get_abs_ubound_arf(t, acb_imagref(vec + i), prec);
|
|
arf_addmul(s, t, t, prec, ARF_RND_UP);
|
|
}
|
|
|
|
arf_clear(t);
|
|
}
|
|
|
|
void
|
|
acb_mat_det_lu_inplace(acb_t det, acb_mat_t A, slong prec)
|
|
{
|
|
slong i, n, sign, rank;
|
|
int is_real;
|
|
|
|
n = acb_mat_nrows(A);
|
|
rank = acb_mat_gauss_partial(A, prec);
|
|
sign = (rank < 0) ? -1 : 1;
|
|
rank = FLINT_ABS(rank);
|
|
|
|
_acb_mat_diag_prod(det, A, 0, rank, prec);
|
|
acb_mul_si(det, det, sign, prec);
|
|
|
|
/* bound unreduced part using Hadamard's inequality */
|
|
if (rank < n)
|
|
{
|
|
arf_t t;
|
|
arf_t d;
|
|
acb_t e;
|
|
|
|
arf_init(t);
|
|
arf_init(d);
|
|
acb_init(e);
|
|
|
|
arf_one(d);
|
|
|
|
is_real = acb_mat_is_real(A);
|
|
|
|
for (i = rank; i < n; i++)
|
|
{
|
|
acb_vec_get_arf_2norm_squared_bound(t, A->rows[i] + rank, n - rank, MAG_BITS);
|
|
arf_mul(d, d, t, MAG_BITS, ARF_RND_UP);
|
|
}
|
|
|
|
/* now d contains the absolute value of the determinant */
|
|
arf_sqrt(d, d, MAG_BITS, ARF_RND_UP);
|
|
|
|
/* multiply by disc with radius d */
|
|
if (is_real)
|
|
{
|
|
arb_add_error_arf(acb_realref(e), d);
|
|
}
|
|
else
|
|
{
|
|
arb_add_error_arf(acb_realref(e), d);
|
|
arb_add_error_arf(acb_imagref(e), d);
|
|
}
|
|
|
|
acb_mul(det, det, e, prec);
|
|
|
|
acb_clear(e);
|
|
arf_clear(d);
|
|
arf_clear(t);
|
|
}
|
|
}
|
|
|
|
void
|
|
acb_mat_det_lu(acb_t det, const acb_mat_t A, slong prec)
|
|
{
|
|
slong n;
|
|
|
|
n = acb_mat_nrows(A);
|
|
|
|
if (n == 0)
|
|
{
|
|
acb_one(det);
|
|
}
|
|
else
|
|
{
|
|
acb_mat_t T;
|
|
acb_mat_init(T, acb_mat_nrows(A), acb_mat_ncols(A));
|
|
acb_mat_set(T, A);
|
|
acb_mat_det_lu_inplace(det, T, prec);
|
|
acb_mat_clear(T);
|
|
}
|
|
}
|
|
|