arb/acb_dft/test/t-dft.c

180 lines
4.9 KiB
C

/*
Copyright (C) 2016 Pascal Molin
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_dft.h"
typedef void (*do_f) (acb_ptr w, acb_srcptr v, slong len, slong prec);
void
check_vec_eq_prec(acb_srcptr w1, acb_srcptr w2, slong len, slong prec, slong digits, ulong q, char d[], char f1[], char f2[])
{
slong i;
for (i = 0; i < len; i++)
{
if (!acb_overlaps(w1 + i, w2 + i))
{
flint_printf("FAIL\n\n");
flint_printf("q = %wu, size = %wd\n", q, len);
flint_printf("\nDFT %s differ from index %wd / %wd \n", d, i, len);
flint_printf("\n%s =\n", f1);
acb_vec_printd_index(w1, len, digits);
flint_printf("\n%s =\n", f2);
acb_vec_printd_index(w2, len, digits);
flint_printf("\n\n");
abort();
}
else if (!acb_is_zero(w1+i) && (acb_rel_accuracy_bits(w1 + i) < 30
|| acb_rel_accuracy_bits(w2 + i) < 30))
{
flint_printf("FAIL\n\n");
flint_printf("q = %wu\n", q);
flint_printf("\nDFT inaccurate from index %wd / %wd \n", i, len);
flint_printf("\n%s =\n", f1);
acb_printd(w1 + i, digits);
flint_printf("\n%s =\n", f2);
acb_printd(w2 + i, digits);
flint_printf("\nerrors %wd & %wd [prec = %wd]\n",
acb_rel_accuracy_bits(w1 + i),
acb_rel_accuracy_bits(w2 + i), prec);
abort();
}
}
}
int main()
{
slong k;
slong prec = 100, digits = 30;
slong nq = 19;
ulong q[19] = { 0, 1, 2, 3, 4, 5, 6, 23, 10, 15, 16, 30, 59, 125, 308, 335, 525, 961, 1225};
slong nr = 5;
flint_rand_t state;
slong f, nf = 5;
do_f func[5] = { acb_dft_naive, acb_dft_cyc, acb_dft_crt, acb_dft_bluestein, acb_dft };
char * name[5] = { "naive", "cyc", "crt", "bluestein", "default" };
flint_printf("dft....");
fflush(stdout);
flint_randinit(state);
/* cyclic dft */
for (k = 0; k < nq + nr; k++)
{
slong i, len, f0;
acb_ptr v, w1, w2, w3;
if (k < nq)
len = q[k];
else
len = n_randint(state, 1000);
v = _acb_vec_init(len);
w1 = _acb_vec_init(len);
w2 = _acb_vec_init(len);
w3 = _acb_vec_init(len);
for (i = 0; i < len; i++)
acb_set_si_si(v + i, i, 3 - i);
/* avoid naive for long transforms */
f0 = (len > 50);
for (f = f0; f < nf; f++)
{
acb_ptr w = (f == f0) ? w1 : w2;
if (DFT_VERB)
flint_printf("\n%s %wu\n", name[f], len);
/* compute DFT */
func[f](w, v, len, prec);
if (len < 500)
{
/* check aliasing */
_acb_vec_set(w3, v, len);
func[f](w3, w3, len, prec);
check_vec_eq_prec(w1, w3, len, prec, digits, len, "alias", name[0], name[f]);
}
if (f > f0)
{
/* check non aliased */
check_vec_eq_prec(w1, w2, len, prec, digits, len, "no alias", name[0], name[f]);
}
else
{
/* check inverse */
acb_dft_inverse(w2, w1, len, prec);
check_vec_eq_prec(v, w2, len, prec, digits, len, "inverse", "original", "inverse");
}
}
_acb_vec_clear(v, len);
_acb_vec_clear(w1, len);
_acb_vec_clear(w2, len);
_acb_vec_clear(w3, len);
}
/* radix2 dft */
for (k = 0; k < 11; k++)
{
slong n = 1 << k, j;
acb_ptr v, w1, w2;
v = w2 = _acb_vec_init(n);
w1 = _acb_vec_init(n);
for (j = 0; j < n; j++)
acb_set_si_si(v + j, j, j + 2);
acb_dft_cyc(w1, v, n, prec);
acb_dft_rad2_inplace(w2, k, prec);
check_vec_eq_prec(w1, w2, n, prec, digits, n, "rad2", "cyc", "rad2");
_acb_vec_clear(v, n);
_acb_vec_clear(w1, n);
}
/* multi-threaded radix2 dft */
for (k = 0; k < 11; k++)
{
slong n = 1 << k, j;
acb_ptr v, w1, w2;
v = w2 = _acb_vec_init(n);
w1 = _acb_vec_init(n);
flint_set_num_threads(k % 5 + 1);
for (j = 0; j < n; j++)
acb_set_si_si(v + j, j, j + 2);
acb_dft_cyc(w1, v, n, prec);
acb_dft_rad2_inplace_threaded(w2, k, prec);
check_vec_eq_prec(w1, w2, n, prec, digits, n, "rad2", "cyc", "rad2");
_acb_vec_clear(v, n);
_acb_vec_clear(w1, n);
}
flint_randclear(state);
flint_cleanup();
flint_printf("PASS\n");
return EXIT_SUCCESS;
}