arb/acb_hypgeom/pfq_series_direct.c

270 lines
6.7 KiB
C

/*
Copyright (C) 2015 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_hypgeom.h"
void
_acb_poly_reciprocal_majorant(arb_ptr res, acb_srcptr vec, slong len, slong prec)
{
slong i;
for (i = 0; i < len; i++)
{
if (i == 0)
{
acb_get_abs_lbound_arf(arb_midref(res + i), vec + i, prec);
mag_zero(arb_radref(res + i));
}
else
{
acb_get_abs_ubound_arf(arb_midref(res + i), vec + i, prec);
arf_neg(arb_midref(res + i), arb_midref(res + i));
mag_zero(arb_radref(res + i));
}
}
}
void
acb_poly_reciprocal_majorant(arb_poly_t res, const acb_poly_t poly, slong prec)
{
arb_poly_fit_length(res, poly->length);
_acb_poly_reciprocal_majorant(res->coeffs, poly->coeffs, poly->length, prec);
_arb_poly_set_length(res, poly->length);
}
/* F = 1 + U + U^2 + ... = 1/(1-U) assuming that U[0] is positive;
indeterminate if not convergent */
static void
arb_poly_geometric_sum(arb_poly_t F, const arb_poly_t U, slong len, slong prec)
{
if (U->length == 0)
{
arb_poly_one(F);
return;
}
arb_poly_add_si(F, U, -1, prec);
arb_poly_neg(F, F);
if (F->length > 0 && arb_is_positive(F->coeffs))
{
arb_poly_inv_series(F, F, len, prec);
}
else
{
arb_poly_fit_length(F, len);
_arb_vec_indeterminate(F->coeffs, len);
_arb_poly_set_length(F, len);
}
}
/* F = 1 + U + U^2 + U^3 + ... = 1/(1-U)
U = product of (1 + |A-B|/(|B[0] - |B[1:]|)
product of (1 / (|B[0] - |B[1:]|))
* |Z|
*/
void
acb_hypgeom_pfq_series_bound_factor(arb_poly_t F,
const acb_poly_struct * a, slong p,
const acb_poly_struct * b, slong q,
const acb_poly_t z,
slong n, slong len, slong prec)
{
slong i;
arb_poly_t T, U, V;
acb_poly_t BN, AB;
/* not convergent */
if (p > q)
{
arb_poly_fit_length(F, len);
_arb_vec_indeterminate(F->coeffs, len);
_arb_poly_set_length(F, len);
return;
}
arb_poly_init(T);
arb_poly_init(U);
arb_poly_init(V);
acb_poly_init(BN);
acb_poly_init(AB);
acb_poly_majorant(U, z, prec);
for (i = 0; i < q; i++)
{
acb_poly_add_si(BN, b + i, n, prec);
if (acb_poly_length(BN) != 0 &&
arb_is_positive(acb_realref(BN->coeffs)))
{
if (i < p)
{
/* 1 + |a-b|/reciprocal_majorant(b + n) */
acb_poly_sub(AB, a + i, b + i, prec);
acb_poly_majorant(T, AB, prec);
acb_poly_reciprocal_majorant(V, BN, prec);
arb_poly_div_series(T, T, V, len, prec);
arb_poly_add_si(T, T, 1, prec);
arb_poly_mullow(U, U, T, len, prec);
}
else
{
acb_poly_reciprocal_majorant(T, BN, prec);
arb_poly_div_series(U, U, T, len, prec);
}
}
else
{
arb_poly_fit_length(U, len);
_arb_vec_indeterminate(U->coeffs, len);
_arb_poly_set_length(U, len);
break;
}
}
/* F = 1/(1-U) */
arb_poly_geometric_sum(F, U, len, prec);
arb_poly_clear(T);
arb_poly_clear(U);
arb_poly_clear(V);
acb_poly_clear(BN);
acb_poly_clear(AB);
}
void
acb_hypgeom_pfq_series_direct(acb_poly_t res,
const acb_poly_struct * a, slong p,
const acb_poly_struct * b, slong q,
const acb_poly_t z, int regularized,
slong n, slong len, slong prec)
{
acb_poly_t s, t, err;
arb_poly_t C, T;
slong i;
int is_real;
int terminating;
/* default algorithm to choose number of terms */
if (n < 0)
{
n = acb_hypgeom_pfq_series_choose_n(a, p, b, q, z, len, prec);
}
terminating = 0;
/* check if it terminates due to a root of the numerator */
for (i = 0; i < p; i++)
{
if (acb_poly_length(a + i) == 0 && n > 0)
{
terminating = 1;
}
else if (acb_poly_length(a + i) == 1)
{
acb_srcptr c = acb_poly_get_coeff_ptr(a + i, 0);
if (acb_is_int(c) && arb_is_negative(acb_realref(c)) &&
arf_cmpabs_ui(arb_midref(acb_realref(c)), n) < 0)
{
terminating = 1;
}
}
}
/* check if it terminates (to order n) due to z */
/* the following tests could be made stronger... */
if (z->length == 0 && n >= 1)
{
terminating = 1;
}
else if (!terminating && z->length > 0 && acb_is_zero(z->coeffs) && n >= len)
{
if (regularized)
{
terminating = 1;
}
else
{
terminating = 1;
for (i = 0; i < q; i++)
{
acb_srcptr c = acb_poly_get_coeff_ptr(b + i, 0);
if (!arb_is_positive(acb_realref(c)) && acb_contains_int(c))
terminating = 0;
}
}
}
acb_poly_init(s);
acb_poly_init(t);
acb_poly_init(err);
arb_poly_init(C);
arb_poly_init(T);
acb_hypgeom_pfq_series_sum(s, t, a, p, b, q, z, regularized, n, len, prec);
if (!terminating)
{
is_real = acb_poly_is_real(z);
for (i = 0; i < p; i++)
is_real = is_real && acb_poly_is_real(a + i);
for (i = 0; i < q; i++)
is_real = is_real && acb_poly_is_real(b + i);
acb_poly_majorant(T, t, MAG_BITS);
acb_hypgeom_pfq_series_bound_factor(C, a, p, b, q, z, n, len, MAG_BITS);
if (!_arb_vec_is_finite(T->coeffs, T->length) ||
!_arb_vec_is_finite(C->coeffs, C->length))
{
arb_poly_fit_length(T, len);
_arb_vec_indeterminate(T->coeffs, len);
_arb_poly_set_length(T, len);
}
else
{
arb_poly_mullow(T, T, C, len, MAG_BITS);
}
/* create polynomial of errors */
acb_poly_fit_length(err, len);
for (i = 0; i < FLINT_MIN(len, T->length); i++)
{
arb_add_error(acb_realref(err->coeffs + i), T->coeffs + i);
if (!is_real)
arb_add_error(acb_imagref(err->coeffs + i), T->coeffs + i);
}
_acb_poly_set_length(err, len);
_acb_poly_normalise(err);
acb_poly_add(s, s, err, prec);
}
acb_poly_set(res, s);
acb_poly_clear(s);
acb_poly_clear(t);
acb_poly_clear(err);
arb_poly_clear(C);
arb_poly_clear(T);
}