/*============================================================================= This file is part of ARB. ARB is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. ARB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ARB; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2013 Fredrik Johansson ******************************************************************************/ #include "fmprb_poly.h" #include "gamma.h" #include "zeta.h" static __inline__ void _log_rfac_series(fmprb_ptr t, const fmprb_t x, long r, long len, long prec) { fmprb_struct f[2]; long rflen; fmprb_init(f); fmprb_init(f + 1); fmprb_set(f, x); fmprb_one(f + 1); rflen = FLINT_MIN(len, r + 1); _fmprb_poly_rfac_series_ui(t, f, FLINT_MIN(2, len), r, rflen, prec); _fmprb_poly_log_series(t, t, rflen, len, prec); fmprb_clear(f); fmprb_clear(f + 1); } void _fmprb_poly_lgamma_series(fmprb_ptr res, fmprb_ptr h, long hlen, long len, long prec) { int reflect; long i, r, n, wp; fmprb_t zr; fmprb_ptr t, u; hlen = FLINT_MIN(hlen, len); wp = prec + FLINT_BIT_COUNT(prec); t = _fmprb_vec_init(len); u = _fmprb_vec_init(len); fmprb_init(zr); /* use zeta values at small integers */ if (fmprb_is_int(h) && (fmpr_cmpabs_ui(fmprb_midref(h), prec / 2) < 0)) { r = fmpr_get_si(fmprb_midref(h), FMPR_RND_DOWN); if (r <= 0) { _fmprb_vec_indeterminate(res, len); } else { fmprb_zero(u); if (len > 1) fmprb_const_euler(u + 1, wp); if (len > 2) zeta_ui_vec(u + 2, 2, len - 2, wp); for (i = 2; i < len; i++) fmprb_div_ui(u + i, u + i, i, wp); for (i = 1; i < len; i += 2) fmprb_neg(u + i, u + i); if (r != 1) { fmprb_one(zr); _log_rfac_series(t, zr, r - 1, len, wp); _fmprb_vec_add(u, u, t, len, wp); } } } else { /* otherwise use Stirling series */ gamma_stirling_choose_param_fmprb(&reflect, &r, &n, h, 0, 0, wp); fmprb_add_ui(zr, h, r, wp); gamma_stirling_eval_fmprb_series(u, zr, n, len, wp); if (r != 0) { _log_rfac_series(t, h, r, len, wp); _fmprb_vec_sub(u, u, t, len, wp); } } /* compose with nonconstant part */ fmprb_zero(t); _fmprb_vec_set(t + 1, h + 1, hlen - 1); _fmprb_poly_compose_series(res, u, len, t, hlen, len, prec); fmprb_clear(zr); _fmprb_vec_clear(t, len); _fmprb_vec_clear(u, len); } void fmprb_poly_lgamma_series(fmprb_poly_t res, const fmprb_poly_t f, long n, long prec) { if (f->length == 0 || n == 0) { printf("fmprb_poly_lgamma_series: require n > 0 and nonzero input\n"); abort(); } fmprb_poly_fit_length(res, n); _fmprb_poly_lgamma_series(res->coeffs, f->coeffs, f->length, n, prec); _fmprb_poly_set_length(res, n); _fmprb_poly_normalise(res); }