/* Copyright (C) 2013 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "bernoulli.h" #include "acb.h" void acb_gamma_stirling_choose_param(int * reflect, slong * r, slong * n, const acb_t z, int use_reflect, int digamma, slong prec); void acb_gamma_stirling_bound(mag_ptr err, const acb_t z, slong k0, slong knum, slong n); void arb_gamma_stirling_coeff(arb_t b, ulong k, int digamma, slong prec); void acb_gamma_stirling_eval(acb_t s, const acb_t z, slong nterms, int digamma, slong prec) { acb_t t, logz, zinv, zinv2; arb_t b; mag_t err; slong k, term_prec; double z_mag, term_mag; acb_init(t); acb_init(logz); acb_init(zinv); acb_init(zinv2); arb_init(b); acb_log(logz, z, prec); acb_inv(zinv, z, prec); nterms = FLINT_MAX(nterms, 1); acb_zero(s); if (nterms > 1) { acb_mul(zinv2, zinv, zinv, prec); z_mag = arf_get_d(arb_midref(acb_realref(logz)), ARF_RND_UP) * 1.44269504088896; for (k = nterms - 1; k >= 1; k--) { term_mag = bernoulli_bound_2exp_si(2 * k); term_mag -= (2 * k - 1) * z_mag; term_prec = prec + term_mag; term_prec = FLINT_MIN(term_prec, prec); term_prec = FLINT_MAX(term_prec, 10); arb_gamma_stirling_coeff(b, k, digamma, term_prec); if (prec > 2000) { acb_set_round(t, zinv2, term_prec); acb_mul(s, s, t, term_prec); } else acb_mul(s, s, zinv2, term_prec); arb_add(acb_realref(s), acb_realref(s), b, term_prec); } if (digamma) acb_mul(s, s, zinv2, prec); else acb_mul(s, s, zinv, prec); } /* remainder bound */ mag_init(err); acb_gamma_stirling_bound(err, z, digamma ? 1 : 0, 1, nterms); mag_add(arb_radref(acb_realref(s)), arb_radref(acb_realref(s)), err); mag_add(arb_radref(acb_imagref(s)), arb_radref(acb_imagref(s)), err); mag_clear(err); if (digamma) { acb_neg(s, s); acb_mul_2exp_si(zinv, zinv, -1); acb_sub(s, s, zinv, prec); acb_add(s, s, logz, prec); } else { /* (z-0.5)*log(z) - z + log(2*pi)/2 */ arb_one(b); arb_mul_2exp_si(b, b, -1); arb_set(acb_imagref(t), acb_imagref(z)); arb_sub(acb_realref(t), acb_realref(z), b, prec); acb_mul(t, logz, t, prec); acb_add(s, s, t, prec); acb_sub(s, s, z, prec); arb_const_log_sqrt2pi(b, prec); arb_add(acb_realref(s), acb_realref(s), b, prec); } acb_clear(t); acb_clear(logz); acb_clear(zinv); acb_clear(zinv2); arb_clear(b); } static void _acb_gamma(acb_t y, const acb_t x, slong prec, int inverse) { int reflect; slong r, n, wp; acb_t t, u, v; wp = prec + FLINT_BIT_COUNT(prec); acb_gamma_stirling_choose_param(&reflect, &r, &n, x, 1, 0, wp); acb_init(t); acb_init(u); acb_init(v); if (reflect) { /* gamma(x) = (rf(1-x, r) * pi) / (gamma(1-x+r) sin(pi x)) */ acb_sub_ui(t, x, 1, wp); acb_neg(t, t); acb_rising_ui_rec(u, t, r, wp); arb_const_pi(acb_realref(v), wp); acb_mul_arb(u, u, acb_realref(v), wp); acb_add_ui(t, t, r, wp); acb_gamma_stirling_eval(v, t, n, 0, wp); acb_exp(v, v, wp); acb_sin_pi(t, x, wp); acb_mul(v, v, t, wp); } else { /* gamma(x) = gamma(x+r) / rf(x,r) */ acb_add_ui(t, x, r, wp); acb_gamma_stirling_eval(u, t, n, 0, wp); acb_exp(u, u, prec); acb_rising_ui_rec(v, x, r, wp); } if (inverse) acb_div(y, v, u, prec); else acb_div(y, u, v, prec); acb_clear(t); acb_clear(u); acb_clear(v); } void acb_gamma(acb_t y, const acb_t x, slong prec) { if (acb_is_real(x)) { arb_gamma(acb_realref(y), acb_realref(x), prec); arb_zero(acb_imagref(y)); return; } _acb_gamma(y, x, prec, 0); } void acb_rgamma(acb_t y, const acb_t x, slong prec) { if (acb_is_real(x)) { arb_rgamma(acb_realref(y), acb_realref(x), prec); arb_zero(acb_imagref(y)); return; } _acb_gamma(y, x, prec, 1); } /* corrects branch cut of sum_{k=0}^{r-1} log(z+k), given the logarithm of the product */ void _acb_log_rising_correct_branch(acb_t t, const acb_t t_wrong, const acb_t z, ulong r, slong prec) { acb_t f; arb_t pi, u, v; fmpz_t pi_mult; slong i, argprec; acb_init(f); arb_init(u); arb_init(pi); arb_init(v); fmpz_init(pi_mult); argprec = FLINT_MIN(prec, 40); arb_zero(u); for (i = 0; i < r; i++) { acb_add_ui(f, z, i, argprec); acb_arg(v, f, argprec); arb_add(u, u, v, argprec); } if (argprec == prec) { arb_set(acb_imagref(t), u); } else { arb_sub(v, u, acb_imagref(t), argprec); arb_const_pi(pi, argprec); arb_div(v, v, pi, argprec); if (arb_get_unique_fmpz(pi_mult, v)) { arb_const_pi(v, prec); arb_mul_fmpz(v, v, pi_mult, prec); arb_add(acb_imagref(t), acb_imagref(t), v, prec); } else { arb_zero(u); for (i = 0; i < r; i++) { acb_add_ui(f, z, i, prec); acb_arg(v, f, prec); arb_add(u, u, v, prec); } arb_set(acb_imagref(t), u); } } acb_clear(f); arb_clear(u); arb_clear(v); arb_clear(pi); fmpz_clear(pi_mult); } void acb_lgamma(acb_t y, const acb_t x, slong prec) { int reflect; slong r, n, wp; acb_t t, u, v; if (acb_is_real(x) && arb_is_positive(acb_realref(x))) { arb_lgamma(acb_realref(y), acb_realref(x), prec); arb_zero(acb_imagref(y)); return; } wp = prec + FLINT_BIT_COUNT(prec); acb_gamma_stirling_choose_param(&reflect, &r, &n, x, 1, 0, wp); acb_init(t); acb_init(u); acb_init(v); if (reflect) { /* log gamma(x) = log rf(1-x, r) - log gamma(1-x+r) - log sin(pi x) + log(pi) */ acb_sub_ui(u, x, 1, wp); acb_neg(u, u); acb_rising_ui_rec(t, u, r, prec); acb_log(t, t, wp); _acb_log_rising_correct_branch(t, t, u, r, wp); acb_add_ui(u, u, r, wp); acb_gamma_stirling_eval(v, u, n, 0, wp); acb_sub(t, t, v, wp); acb_log_sin_pi(u, x, wp); acb_sub(t, t, u, wp); acb_const_pi(u, wp); acb_log(u, u, wp); acb_add(y, t, u, wp); } else { /* log gamma(x) = log gamma(x+r) - log rf(x,r) */ acb_add_ui(t, x, r, wp); acb_gamma_stirling_eval(u, t, n, 0, wp); acb_rising_ui_rec(t, x, r, prec); acb_log(t, t, wp); _acb_log_rising_correct_branch(t, t, x, r, wp); acb_sub(y, u, t, prec); } acb_clear(t); acb_clear(u); acb_clear(v); }