/*============================================================================= This file is part of ARB. ARB is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. ARB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ARB; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2013 Fredrik Johansson ******************************************************************************/ #include "fmprb_calc.h" #define BLOCK_NO_ZERO 0 #define BLOCK_ISOLATED_ZERO 1 #define BLOCK_UNKNOWN 2 /* 0 means that it *could* be zero; otherwise +/- 1 */ static __inline__ int _fmprb_sign(const fmprb_t t) { if (fmprb_is_positive(t)) return 1; else if (fmprb_is_negative(t)) return -1; else return 0; } static int check_block(fmprb_calc_func_t func, void * param, const fmprb_t block, int asign, int bsign, long prec) { fmprb_struct t[2]; int result; fmprb_init(t + 0); fmprb_init(t + 1); func(t, block, param, 1, prec); result = BLOCK_UNKNOWN; if (fmprb_is_positive(t) || fmprb_is_negative(t)) { result = BLOCK_NO_ZERO; } else { if ((asign < 0 && bsign > 0) || (asign > 0 && bsign < 0)) { func(t, block, param, 2, prec); if (fmprb_is_finite(t + 1) && !fmprb_contains_zero(t + 1)) { result = BLOCK_ISOLATED_ZERO; } } } fmprb_clear(t + 0); fmprb_clear(t + 1); return result; } static int partition(fmprb_t L, fmprb_t R, fmprb_calc_func_t func, void * param, const fmprb_t block, long prec) { fmprb_t t, m; int msign; fmprb_init(t); fmprb_init(m); fmprb_set_fmpr(m, fmprb_midref(block)); func(t, m, param, 1, prec); msign = _fmprb_sign(t); fmpr_mul_2exp_si(fmprb_radref(L), fmprb_radref(block), -1); fmpr_set(fmprb_radref(R), fmprb_radref(L)); /* XXX: deal with huge shifts */ fmpr_sub(fmprb_midref(L), fmprb_midref(block), fmprb_radref(L), FMPR_PREC_EXACT, FMPR_RND_DOWN); fmpr_add(fmprb_midref(R), fmprb_midref(block), fmprb_radref(R), FMPR_PREC_EXACT, FMPR_RND_DOWN); fmprb_clear(t); fmprb_clear(m); return msign; } #define ADD_BLOCK \ if (*length >= *alloc) \ { \ long new_alloc; \ new_alloc = (*alloc == 0) ? 1 : 2 * (*alloc); \ *blocks = flint_realloc(*blocks, sizeof(fmprb_struct) * new_alloc); \ *flags = flint_realloc(*flags, sizeof(int) * new_alloc); \ *alloc = new_alloc; \ } \ fmprb_init((*blocks) + *length); \ fmprb_set((*blocks) + *length, block); \ (*flags)[*length] = status; \ (*length)++; \ static void isolate_roots_recursive(fmprb_ptr * blocks, int ** flags, long * length, long * alloc, fmprb_calc_func_t func, void * param, const fmprb_t block, int asign, int bsign, long depth, long * eval_count, long * found_count, long prec) { int status; if (*found_count <= 0 || *eval_count <= 0) { status = BLOCK_UNKNOWN; ADD_BLOCK } else { *eval_count -= 1; status = check_block(func, param, block, asign, bsign, prec); if (status != BLOCK_NO_ZERO) { if (status == BLOCK_ISOLATED_ZERO || depth <= 0) { if (status == BLOCK_ISOLATED_ZERO) { if (fmprb_calc_verbose) { printf("found isolated root in: "); fmprb_printd(block, 15); printf("\n"); } *found_count -= 1; } ADD_BLOCK } else { fmprb_t L, R; int msign; fmprb_init(L); fmprb_init(R); msign = partition(L, R, func, param, block, prec); if (msign == 0 && fmprb_calc_verbose) { printf("possible zero at midpoint: "); fmprb_printd(block, 15); printf("\n"); } isolate_roots_recursive(blocks, flags, length, alloc, func, param, L, asign, msign, depth - 1, eval_count, found_count, prec); isolate_roots_recursive(blocks, flags, length, alloc, func, param, R, msign, bsign, depth - 1, eval_count, found_count, prec); fmprb_clear(L); fmprb_clear(R); } } } } long fmprb_calc_isolate_roots(fmprb_ptr * blocks, int ** flags, fmprb_calc_func_t func, void * param, const fmprb_t block, long maxdepth, long maxeval, long maxfound, long prec) { int asign, bsign; long length, alloc; fmprb_t t, u; *blocks = NULL; *flags = NULL; length = 0; alloc = 0; fmprb_init(t); fmprb_init(u); /* XXX: deal with huge shifts */ fmpr_sub(fmprb_midref(t), fmprb_midref(block), fmprb_radref(block), FMPR_PREC_EXACT, FMPR_RND_DOWN); func(u, t, param, 1, prec); asign = _fmprb_sign(u); fmpr_add(fmprb_midref(t), fmprb_midref(block), fmprb_radref(block), FMPR_PREC_EXACT, FMPR_RND_DOWN); func(u, t, param, 1, prec); bsign = _fmprb_sign(u); fmprb_clear(t); fmprb_clear(u); isolate_roots_recursive(blocks, flags, &length, &alloc, func, param, block, asign, bsign, maxdepth, &maxeval, &maxfound, prec); *blocks = flint_realloc(*blocks, length * sizeof(fmprb_struct)); *flags = flint_realloc(*flags, length * sizeof(int)); return length; }