/*============================================================================= This file is part of ARB. ARB is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. ARB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ARB; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2013 Fredrik Johansson ******************************************************************************/ #include "arb_poly.h" slong arf_get_si(const arf_t x, arf_rnd_t rnd); void _arb_poly_lgamma_series_at_one(arb_ptr u, slong len, slong prec); void arb_gamma_stirling_choose_param(int * reflect, slong * r, slong * n, const arb_t x, int use_reflect, int digamma, slong prec); void _arb_poly_gamma_stirling_eval(arb_ptr res, const arb_t z, slong n, slong num, slong prec); static __inline__ void _log_rising_ui_series(arb_ptr t, const arb_t x, slong r, slong len, slong prec) { arb_struct f[2]; slong rflen; arb_init(f); arb_init(f + 1); arb_set(f, x); arb_one(f + 1); rflen = FLINT_MIN(len, r + 1); _arb_poly_rising_ui_series(t, f, FLINT_MIN(2, len), r, rflen, prec); _arb_poly_log_series(t, t, rflen, len, prec); arb_clear(f); arb_clear(f + 1); } void _arb_poly_lgamma_series(arb_ptr res, arb_srcptr h, slong hlen, slong len, slong prec) { int reflect; slong r, n, wp; arb_t zr; arb_ptr t, u; if (!arb_is_positive(h)) { _arb_vec_indeterminate(res, len); return; } hlen = FLINT_MIN(hlen, len); wp = prec + FLINT_BIT_COUNT(prec); t = _arb_vec_init(len); u = _arb_vec_init(len); arb_init(zr); /* use zeta values at small integers */ if (arb_is_int(h) && (arf_cmpabs_ui(arb_midref(h), prec / 2) < 0)) { r = arf_get_si(arb_midref(h), ARF_RND_DOWN); if (r <= 0) { _arb_vec_indeterminate(res, len); goto cleanup; } else { _arb_poly_lgamma_series_at_one(u, len, wp); if (r != 1) { arb_one(zr); _log_rising_ui_series(t, zr, r - 1, len, wp); _arb_vec_add(u, u, t, len, wp); } } } else if (len <= 2) { arb_lgamma(u, h, wp); if (len == 2) arb_digamma(u + 1, h, wp); } else { /* otherwise use Stirling series */ arb_gamma_stirling_choose_param(&reflect, &r, &n, h, 0, 0, wp); arb_add_ui(zr, h, r, wp); _arb_poly_gamma_stirling_eval(u, zr, n, len, wp); if (r != 0) { _log_rising_ui_series(t, h, r, len, wp); _arb_vec_sub(u, u, t, len, wp); } } /* compose with nonconstant part */ arb_zero(t); _arb_vec_set(t + 1, h + 1, hlen - 1); _arb_poly_compose_series(res, u, len, t, hlen, len, prec); cleanup: arb_clear(zr); _arb_vec_clear(t, len); _arb_vec_clear(u, len); } void arb_poly_lgamma_series(arb_poly_t res, const arb_poly_t f, slong n, slong prec) { arb_poly_fit_length(res, n); if (f->length == 0 || n == 0) _arb_vec_indeterminate(res->coeffs, n); else _arb_poly_lgamma_series(res->coeffs, f->coeffs, f->length, n, prec); _arb_poly_set_length(res, n); _arb_poly_normalise(res); }