/*============================================================================= This file is part of ARB. ARB is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. ARB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ARB; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2013 Fredrik Johansson ******************************************************************************/ #include "fmpcb_poly.h" #include "gamma.h" #include "zeta.h" /* series of c^(d+x) */ static __inline__ void _fmpcb_poly_pow_cpx(fmpcb_ptr res, const fmpcb_t c, const fmpcb_t d, long trunc, long prec) { long i; fmpcb_t logc; fmpcb_init(logc); fmpcb_log(logc, c, prec); fmpcb_mul(res + 0, logc, d, prec); fmpcb_exp(res + 0, res + 0, prec); for (i = 1; i < trunc; i++) { fmpcb_mul(res + i, res + i - 1, logc, prec); fmpcb_div_ui(res + i, res + i, i, prec); } fmpcb_clear(logc); } void _fmpcb_poly_zeta_series(fmpcb_ptr res, fmpcb_srcptr h, long hlen, const fmpcb_t a, int deflate, long len, long prec) { long i; fmpcb_ptr t, u; hlen = FLINT_MIN(hlen, len); t = _fmpcb_vec_init(len); u = _fmpcb_vec_init(len); /* use reflection formula */ if (fmpr_sgn(fmprb_midref(fmpcb_realref(h))) < 0 && fmpcb_is_one(a)) { /* zeta(s) = (2*pi)**s * sin(pi*s/2) / pi * gamma(1-s) * zeta(1-s) */ fmpcb_t pi; fmpcb_ptr f, s1, s2, s3, s4; fmpcb_init(pi); f = _fmpcb_vec_init(2); s1 = _fmpcb_vec_init(len); s2 = _fmpcb_vec_init(len); s3 = _fmpcb_vec_init(len); s4 = _fmpcb_vec_init(len); fmpcb_const_pi(pi, prec); /* s1 = (2*pi)**s */ fmpcb_mul_2exp_si(pi, pi, 1); _fmpcb_poly_pow_cpx(s1, pi, h, len, prec); fmpcb_mul_2exp_si(pi, pi, -1); /* s2 = sin(pi*s/2) / pi */ fmpcb_mul_2exp_si(pi, pi, -1); fmpcb_mul(f, pi, h, prec); fmpcb_set(f + 1, pi); fmpcb_mul_2exp_si(pi, pi, 1); _fmpcb_poly_sin_series(s2, f, 2, len, prec); _fmpcb_vec_scalar_div(s2, s2, len, pi, prec); /* s3 = gamma(1-s) */ fmpcb_sub_ui(f, h, 1, prec); fmpcb_neg(f, f); fmpcb_set_si(f + 1, -1); _fmpcb_poly_gamma_series(s3, f, 2, len, prec); /* s4 = zeta(1-s) */ fmpcb_sub_ui(f, h, 1, prec); fmpcb_neg(f, f); zeta_series(s4, f, a, 0, len, prec); for (i = 1; i < len; i += 2) fmpcb_neg(s4 + i, s4 + i); _fmpcb_poly_mullow(u, s1, len, s2, len, len, prec); _fmpcb_poly_mullow(s1, s3, len, s4, len, len, prec); _fmpcb_poly_mullow(t, u, len, s1, len, len, prec); /* add 1/(1-(s+t)) = 1/(1-s) + t/(1-s)^2 + ... */ if (deflate) { fmpcb_sub_ui(u, h, 1, prec); fmpcb_neg(u, u); fmpcb_inv(u, u, prec); for (i = 1; i < len; i++) fmpcb_mul(u + i, u + i - 1, u, prec); _fmpcb_vec_add(t, t, u, len, prec); } fmpcb_clear(pi); _fmpcb_vec_clear(f, 2); _fmpcb_vec_clear(s1, len); _fmpcb_vec_clear(s2, len); _fmpcb_vec_clear(s3, len); _fmpcb_vec_clear(s4, len); } else { zeta_series(t, h, a, deflate, len, prec); } /* compose with nonconstant part */ fmpcb_zero(u); _fmpcb_vec_set(u + 1, h + 1, hlen - 1); _fmpcb_poly_compose_series(res, t, len, u, hlen, len, prec); _fmpcb_vec_clear(t, len); _fmpcb_vec_clear(u, len); } void fmpcb_poly_zeta_series(fmpcb_poly_t res, const fmpcb_poly_t f, const fmpcb_t a, int deflate, long n, long prec) { if (n == 0) { fmpcb_poly_zero(res); return; } fmpcb_poly_fit_length(res, n); if (f->length == 0) { fmpcb_t t; fmpcb_init(t); _fmpcb_poly_zeta_series(res->coeffs, t, 1, a, deflate, n, prec); fmpcb_clear(t); } else { _fmpcb_poly_zeta_series(res->coeffs, f->coeffs, f->length, a, deflate, n, prec); } _fmpcb_poly_set_length(res, n); _fmpcb_poly_normalise(res); }