/*============================================================================= This file is part of ARB. ARB is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. ARB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ARB; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2013 Fredrik Johansson ******************************************************************************/ #include "fmpcb_poly.h" #include "gamma.h" #include "zeta.h" static __inline__ void _log_rfac_series(fmpcb_ptr t, const fmpcb_t x, long r, long len, long prec) { fmpcb_struct f[2]; fmprb_t pi, u, v; fmpz_t pi_mult; long i, rflen, argprec; fmpcb_init(f); fmpcb_init(f + 1); fmprb_init(u); fmprb_init(pi); fmprb_init(v); fmpz_init(pi_mult); fmpcb_set(f, x); fmpcb_one(f + 1); rflen = FLINT_MIN(len, r + 1); _fmpcb_poly_rfac_series_ui(t, f, FLINT_MIN(2, len), r, rflen, prec); _fmpcb_poly_log_series(t, t, rflen, len, prec); /* now get the right branch cut for the constant term TODO: make this a proper function */ argprec = FLINT_MIN(prec, 40); fmprb_zero(u); for (i = 0; i < r; i++) { fmpcb_add_ui(f, x, i, argprec); fmpcb_arg(v, f, argprec); fmprb_add(u, u, v, argprec); } if (argprec == prec) { fmprb_set(fmpcb_imagref(t), u); } else { fmprb_sub(v, u, fmpcb_imagref(t), argprec); fmprb_const_pi(pi, argprec); fmprb_div(v, v, pi, argprec); if (fmprb_get_unique_fmpz(pi_mult, v)) { fmprb_const_pi(v, prec); fmprb_mul_fmpz(v, v, pi_mult, prec); fmprb_add(fmpcb_imagref(t), fmpcb_imagref(t), v, prec); } else { fmprb_zero(u); for (i = 0; i < r; i++) { fmpcb_add_ui(f, x, i, prec); fmpcb_arg(v, f, prec); fmprb_add(u, u, v, prec); } fmprb_set(fmpcb_imagref(t), u); } } fmpcb_clear(f); fmpcb_clear(f + 1); fmprb_clear(u); fmprb_clear(v); fmprb_clear(pi); fmpz_clear(pi_mult); } void _fmpcb_poly_lgamma_series(fmpcb_ptr res, fmpcb_srcptr h, long hlen, long len, long prec) { int reflect; long r, n, wp; fmpcb_t zr; fmpcb_ptr t, u; hlen = FLINT_MIN(hlen, len); wp = prec + FLINT_BIT_COUNT(prec); t = _fmpcb_vec_init(len); u = _fmpcb_vec_init(len); fmpcb_init(zr); /* TODO: use real code at real numbers */ if (0) { } else { /* otherwise use Stirling series */ gamma_stirling_choose_param_fmpcb(&reflect, &r, &n, h, 0, 0, wp); fmpcb_add_ui(zr, h, r, wp); gamma_stirling_eval_fmpcb_series(u, zr, n, len, wp); if (r != 0) { _log_rfac_series(t, h, r, len, wp); _fmpcb_vec_sub(u, u, t, len, wp); } } /* compose with nonconstant part */ fmpcb_zero(t); _fmpcb_vec_set(t + 1, h + 1, hlen - 1); _fmpcb_poly_compose_series(res, u, len, t, hlen, len, prec); fmpcb_clear(zr); _fmpcb_vec_clear(t, len); _fmpcb_vec_clear(u, len); } void fmpcb_poly_lgamma_series(fmpcb_poly_t res, const fmpcb_poly_t f, long n, long prec) { fmpcb_poly_fit_length(res, n); if (f->length == 0 || n == 0) _fmpcb_vec_indeterminate(res->coeffs, n); else _fmpcb_poly_lgamma_series(res->coeffs, f->coeffs, f->length, n, prec); _fmpcb_poly_set_length(res, n); _fmpcb_poly_normalise(res); }