/*============================================================================= This file is part of ARB. ARB is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. ARB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ARB; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2013 Fredrik Johansson ******************************************************************************/ #include "fmprb_poly.h" #include "gamma.h" #include "zeta.h" void _fmprb_poly_rgamma_series(fmprb_ptr res, fmprb_srcptr h, long hlen, long len, long prec) { int reflect; long i, rflen, r, n, wp; fmprb_ptr t, u, v; fmprb_struct f[2]; hlen = FLINT_MIN(hlen, len); wp = prec + FLINT_BIT_COUNT(prec); t = _fmprb_vec_init(len); u = _fmprb_vec_init(len); v = _fmprb_vec_init(len); fmprb_init(f); fmprb_init(f + 1); /* use zeta values at small integers */ if (fmprb_is_int(h) && (fmpr_cmpabs_ui(fmprb_midref(h), prec / 2) < 0)) { r = fmpr_get_si(fmprb_midref(h), FMPR_RND_DOWN); gamma_lgamma_series_at_one(u, len, wp); _fmprb_vec_neg(u, u, len); _fmprb_poly_exp_series(t, u, len, len, wp); if (r == 1) { _fmprb_vec_swap(v, t, len); } else if (r <= 0) { fmprb_set(f, h); fmprb_one(f + 1); rflen = FLINT_MIN(len, 2 - r); _fmprb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), 1 - r, rflen, wp); _fmprb_poly_mullow(v, t, len, u, rflen, len, wp); } else { fmprb_one(f); fmprb_one(f + 1); rflen = FLINT_MIN(len, r); _fmprb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r - 1, rflen, wp); /* TODO: use div_series? */ _fmprb_poly_inv_series(u, v, rflen, len, wp); _fmprb_poly_mullow(v, t, len, u, len, len, wp); } } else { /* otherwise use Stirling series */ gamma_stirling_choose_param_fmprb(&reflect, &r, &n, h, 1, 0, wp); /* rgamma(h) = (gamma(1-h+r) sin(pi h)) / (rf(1-h, r) * pi), h = h0 + t*/ if (reflect) { /* u = gamma(r+1-h) */ fmprb_sub_ui(f, h, r + 1, wp); fmprb_neg(f, f); gamma_stirling_eval_fmprb_series(t, f, n, len, wp); _fmprb_poly_exp_series(u, t, len, len, wp); for (i = 1; i < len; i += 2) fmprb_neg(u + i, u + i); /* v = sin(pi x) */ fmprb_const_pi(f + 1, wp); fmprb_mul(f, h, f + 1, wp); _fmprb_poly_sin_series(v, f, 2, len, wp); _fmprb_poly_mullow(t, u, len, v, len, len, wp); /* rf(1-h,r) * pi */ if (r == 0) { fmprb_const_pi(u, wp); _fmprb_vec_scalar_div(v, t, len, u, wp); } else { fmprb_sub_ui(f, h, 1, wp); fmprb_neg(f, f); fmprb_set_si(f + 1, -1); rflen = FLINT_MIN(len, r + 1); _fmprb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r, rflen, wp); fmprb_const_pi(u, wp); _fmprb_vec_scalar_mul(v, v, rflen, u, wp); /* divide by rising factorial */ /* TODO: might better to use div_series, when it has a good basecase */ _fmprb_poly_inv_series(u, v, rflen, len, wp); _fmprb_poly_mullow(v, t, len, u, len, len, wp); } } else { /* rgamma(h) = rgamma(h+r) rf(h,r) */ if (r == 0) { fmprb_add_ui(f, h, r, wp); gamma_stirling_eval_fmprb_series(t, f, n, len, wp); _fmprb_vec_neg(t, t, len); _fmprb_poly_exp_series(v, t, len, len, wp); } else { fmprb_set(f, h); fmprb_one(f + 1); rflen = FLINT_MIN(len, r + 1); _fmprb_poly_rising_ui_series(t, f, FLINT_MIN(2, len), r, rflen, wp); fmprb_add_ui(f, h, r, wp); gamma_stirling_eval_fmprb_series(v, f, n, len, wp); _fmprb_vec_neg(v, v, len); _fmprb_poly_exp_series(u, v, len, len, wp); _fmprb_poly_mullow(v, u, len, t, rflen, len, wp); } } } /* compose with nonconstant part */ fmprb_zero(t); _fmprb_vec_set(t + 1, h + 1, hlen - 1); _fmprb_poly_compose_series(res, v, len, t, hlen, len, prec); fmprb_clear(f); fmprb_clear(f + 1); _fmprb_vec_clear(t, len); _fmprb_vec_clear(u, len); _fmprb_vec_clear(v, len); } void fmprb_poly_rgamma_series(fmprb_poly_t res, const fmprb_poly_t f, long n, long prec) { if (f->length == 0 || n == 0) { fmprb_poly_zero(res); } else { fmprb_poly_fit_length(res, n); _fmprb_poly_rgamma_series(res->coeffs, f->coeffs, f->length, n, prec); _fmprb_poly_set_length(res, n); _fmprb_poly_normalise(res); } }